Skip to main content

Research Repository

Advanced Search

Professor SERHIY BOZHKO's Outputs (80)

An Enhanced Droop Control Method for multi-source Electric Power System of More Electric Aircraft (2021)
Presentation / Conference Contribution
Hussaini, H., Yang, T., Wang, C., & Bozho, S. (2021, October). An Enhanced Droop Control Method for multi-source Electric Power System of More Electric Aircraft. Paper presented at MEA2021, Bordeaux, France

The more electric aircraft concept has been identified as the major trend of future aircraft. The DC distribution network where multiple electrical sources are connected to a common HVDC bus is a promising architecture for more electric aircraft appl... Read More about An Enhanced Droop Control Method for multi-source Electric Power System of More Electric Aircraft.

Control system design and the power management of MEFADEC assembled on more-electric aircraft (2018)
Presentation / Conference Contribution
Yin, M., Bozhko, S., Yao, T., & You, C. (2018, November). Control system design and the power management of MEFADEC assembled on more-electric aircraft. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, ESARS-ITEC 2018

This paper deals with a novel control system design of More Electric Full Authorized Digital Electronic Control (MEFADEC) on the more electric aircraft. On the base of the analysis of the power management of MEFADEC system, the power of the more elec... Read More about Control system design and the power management of MEFADEC assembled on more-electric aircraft.

Stability assessment of a droop-controlled multi-generator electrical power system in the more electric aircraft using parameter space approach (2017)
Presentation / Conference Contribution
Gao, F., Zheng, X., & Bozhko, S. (in press). Stability assessment of a droop-controlled multi-generator electrical power system in the more electric aircraft using parameter space approach.

This paper investigates the dynamic stability of a droop-controlled multi-generator system in the more electric aircraft (MEA). Based on the developed state-space model of the potential dc electrical power system (EPS) architecture, the stability bou... Read More about Stability assessment of a droop-controlled multi-generator electrical power system in the more electric aircraft using parameter space approach.

Robust indirect field oriented control of induction generator (2017)
Presentation / Conference Contribution
Bozhko, S., Peresada, S., Kovbasa, S., & Zhelinskyi, M. (in press). Robust indirect field oriented control of induction generator.

The paper presents a novel robust field oriented vector control for induction generators. The proposed controller exploits the concept of indirect field orientation and guarantees asymptotic DC-link voltage regulations when DC-load is constant or slo... Read More about Robust indirect field oriented control of induction generator.

History and recent advancements of electric propulsion and integrated electrical power systems for commercial & naval vessels (2016)
Presentation / Conference Contribution
Yang, T., Cox, T., Degano, M., Bozhko, S., & Gerada, C. (2016). History and recent advancements of electric propulsion and integrated electrical power systems for commercial & naval vessels.

Due to developments in power electronics, electric machines, energy storage and control, electric propulsion and integrated electrical power systems have become major trends for commercial and naval vessels. This is mainly due to the fact that the us... Read More about History and recent advancements of electric propulsion and integrated electrical power systems for commercial & naval vessels.

Flux weakening control of Permanent Magnet Machine based aircraft electric starter-generator (2016)
Presentation / Conference Contribution
Bozhko, S., Rashed, M., Yeoh, S. S., Yang, T., & Hill, C. I. (in press). Flux weakening control of Permanent Magnet Machine based aircraft electric starter-generator.

This paper presents control analysis and design for an aircraft electric starter-generator system based on a Permanent Magnet Machine (PMM) operated in Flux-Weakening mode (FW). The focus is on detailed stability analysis which helped to discover an... Read More about Flux weakening control of Permanent Magnet Machine based aircraft electric starter-generator.

An enhanced secondary control approach for voltage restoration in the DC distribution system (2016)
Presentation / Conference Contribution
Gao, F., Wheeler, P., & Bozhko, S. (2016). An enhanced secondary control approach for voltage restoration in the DC distribution system.

The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduct... Read More about An enhanced secondary control approach for voltage restoration in the DC distribution system.

Stability assessment of a high speed permanent magnet machine based aircraft electrical power system (2016)
Presentation / Conference Contribution
Gao, F., Yeoh, S. S., Hill, C. I., Yang, T., & Bozhko, S. (2016). Stability assessment of a high speed permanent magnet machine based aircraft electrical power system.

Starting an aircraft engine with an electrical machine has been one of the major trends for future aircraft. This paper studies the stability of a permanent-magnet machine (PMM) based aircraft starter/generator (S/G) system. Using control-to-output t... Read More about Stability assessment of a high speed permanent magnet machine based aircraft electrical power system.

Dynamic output feedback linearizing control of saturated induction motors with torque per ampere ratio maximization (2016)
Presentation / Conference Contribution
Peresada, S., Kovbasa, S., Dymko, S., & Bozhko, S. (2016). Dynamic output feedback linearizing control of saturated induction motors with torque per ampere ratio maximization.

The paper presents a novel maximum torque per Ampere (MTA) controller for induction motor (IM) drives. The proposed controller exploits the concept of direct (observer based) field orientation and guarantees asymptotic torque tracking of smooth refer... Read More about Dynamic output feedback linearizing control of saturated induction motors with torque per ampere ratio maximization.

Model predictive control for a dual three-phase two-sector permanent magnet synchronous machine
Presentation / Conference Contribution
Chen, Y., Yang, T., Bozhko, S., Nasir, U., Rodriguez, J. R., & Garcia, C. F. (2020, December). Model predictive control for a dual three-phase two-sector permanent magnet synchronous machine. Presented at 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020), Online Conference

A novel dual three-phase permanent magnet synchronous machine is designed for taxiing motor-generator on propeller aircraft. The unique structre of machine enhances system reliability, and also brings extra merits such as reducing torque ripple when... Read More about Model predictive control for a dual three-phase two-sector permanent magnet synchronous machine.

A Novel Space Vector Modulation Technique For Three Level NPC Converters Within Aircraft Starter Generator Systems
Presentation / Conference Contribution
Li, C., Lo Calzo, G., Bozhko, S., Gerada, C., Wheeler, P., & Yang, T. (2017, November). A Novel Space Vector Modulation Technique For Three Level NPC Converters Within Aircraft Starter Generator Systems. Presented at 4th International Symposium on More Electric Aircraft (MEA 2017), Beijing, China

The neutral point voltage balancing issue for three level Neutral point clamped (NPC) converter has been extensively investigated recently. Different solutions to balance the neutral point have been proposed. However the proposed solutions so far eit... Read More about A Novel Space Vector Modulation Technique For Three Level NPC Converters Within Aircraft Starter Generator Systems.

Comparative Study of Sensorless Methods Based on Sliding Mode Observer for Dual Three-Phase Permanent Magnet Synchronous Machine
Presentation / Conference Contribution
Fan, L., Yang, T., Chen, Y., & Bozhko, S. (2020, December). Comparative Study of Sensorless Methods Based on Sliding Mode Observer for Dual Three-Phase Permanent Magnet Synchronous Machine. Presented at The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020), Online

In recent years, increased attentions have been given to multiphase electrical machines because of their fault tolerance ability which is quite important for more-electric aircraft application. A dual three-phase PMSM for turboprop aircraft green tax... Read More about Comparative Study of Sensorless Methods Based on Sliding Mode Observer for Dual Three-Phase Permanent Magnet Synchronous Machine.

Torque Ripple Suppression for IPMSM using FEA- based Model Predictive Direct Torque Control
Presentation / Conference Contribution
Nasr, A., Gu, C., Zhao, W., Bozhko, S., & Gerada, C. (2021, April). Torque Ripple Suppression for IPMSM using FEA- based Model Predictive Direct Torque Control. Presented at IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD 2021), Modena, Italy

The interest in model predictive direct torque control (MP-DTC) for high-performance dynamic control of electric drives has been growing. Unlike the conventional direct torque control (DTC), MP-DTC can achieve optimal voltage selection by predicting... Read More about Torque Ripple Suppression for IPMSM using FEA- based Model Predictive Direct Torque Control.

Fault Tolerant Control Strategy Based On Model Predictive Control And Unscented Kalman Filter For Permanent Magnet Synchronous Motor
Presentation / Conference Contribution
Aboelhassan, A., El Sayed, W., Hebala, A., Galea, M., & Bozhko, S. (2021, August). Fault Tolerant Control Strategy Based On Model Predictive Control And Unscented Kalman Filter For Permanent Magnet Synchronous Motor. Presented at 16th IEEE Conference on Industrial Electronics and Applications (ICIEA 2021), Chengdu, China

Permanent Magnet Synchronous Motors (PMSMs) are now extensively used in many critical applications. There is an increasing need for the motor and control system to have fault tolerant capabilities. This paper presents a fault tolerant control strateg... Read More about Fault Tolerant Control Strategy Based On Model Predictive Control And Unscented Kalman Filter For Permanent Magnet Synchronous Motor.

Droop Coefficient Design in Droop Control of Power Converters for Improved Load Sharing: An Artificial Neural Network Approach
Presentation / Conference Contribution
Hussaini, H., Yang, T., Gao, Y., Wang, C., Dragicevic, T., & Bozhko, S. (2021, June). Droop Coefficient Design in Droop Control of Power Converters for Improved Load Sharing: An Artificial Neural Network Approach. Presented at 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan

In this paper, a new approach for the design of the droop coefficient in the droop control of power converters using the artificial neural network (ANN) is proposed. In the first instance, a detailed more electric aircraft (MEA) electrical power syst... Read More about Droop Coefficient Design in Droop Control of Power Converters for Improved Load Sharing: An Artificial Neural Network Approach.

An Enhanced and Cost Saving Droop Control Method for Improved Load Sharing for the MEA Application
Presentation / Conference Contribution
Hussaini, H., Yang, T., Wang, C., & Bozhko, S. (2021, June). An Enhanced and Cost Saving Droop Control Method for Improved Load Sharing for the MEA Application. Presented at 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA

The more electric aircraft (MEA) concept has been identified as the major trend of future aircraft. The DC distribution network is a promising architecture for more-electric aircraft application, where multiple electrical sources are connected to a c... Read More about An Enhanced and Cost Saving Droop Control Method for Improved Load Sharing for the MEA Application.

Design and Implementation of GaN-based Dual-Active-Bridge DC/DC Converters
Presentation / Conference Contribution
Guan, Q., Rubino, L., Wang, Z., & Bozhko, S. (2020, October). Design and Implementation of GaN-based Dual-Active-Bridge DC/DC Converters. Presented at IECON 2020 - 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, Singapore

This paper presents the design and implementation of multicellular isolated bidirectional dual-active-bridge (DAB) DC/DC converters which are the core equipment of the European CleanSkyII Project ASPIRE. Both the primary and the secondary H-bridge ci... Read More about Design and Implementation of GaN-based Dual-Active-Bridge DC/DC Converters.

Design Methodology and Parametric Design Study of the On-Board Electrical Power System for Hybrid Electric Aircraft Propulsion
Presentation / Conference Contribution
Valente, G., Sumsurooah, S., Ian Hill, C., Rashed, M., Vakil, G., Bozhko, S., & Gerada, C. (2020, December). Design Methodology and Parametric Design Study of the On-Board Electrical Power System for Hybrid Electric Aircraft Propulsion. Presented at 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020), Online

This paper presents parametric design studies of the on-board Electrical Power System (EPS) for a distributed hybrid aircraft propulsion. The work presents the methodology that has been adopted to develop the physics-based models of the EPS component... Read More about Design Methodology and Parametric Design Study of the On-Board Electrical Power System for Hybrid Electric Aircraft Propulsion.

Comparative Evaluation of High Power Solid State Power Controller (SSPC) With and Without Auxiliary Over-current Bypass Circuit
Presentation / Conference Contribution
Adhikari, J., Yang, T., Bozhko, S., & Wheeler, P. (2019, October). Comparative Evaluation of High Power Solid State Power Controller (SSPC) With and Without Auxiliary Over-current Bypass Circuit. Presented at IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal

This paper explores the possibility of a semiconductor-based over-current bypass circuit for high current solid-state power controllers (SSPCs). Therefore, two different topologies of the bidirectional DC SSPCs: a. without over-current bypass circuit... Read More about Comparative Evaluation of High Power Solid State Power Controller (SSPC) With and Without Auxiliary Over-current Bypass Circuit.

Methodologies for the Synthesis of Reliable MEA Electrical Power System Architectures
Presentation / Conference Contribution
Recalde, A., Bozhko, S., & Atkin, J. (2020, November). Methodologies for the Synthesis of Reliable MEA Electrical Power System Architectures. Presented at 2020 IEEE Vehicular Power and Propulsion Conference (IEEE VPPC 2020), Gijon, Spain

This paper reviews the main optimization approaches and design frameworks found in the literature for the synthesis of power system architectures for More Electric Aircraft (MEA). System- and network- engineering are the main interdisciplinary fields... Read More about Methodologies for the Synthesis of Reliable MEA Electrical Power System Architectures.

Performance improvement of the CFM56-3 aircraft engine by electric power transfer
Presentation / Conference Contribution
Enalou, H. B., & Bozhko, S. (2018, April). Performance improvement of the CFM56-3 aircraft engine by electric power transfer. Presented at 13th European Conference on Turbomachinery Fluid dynamics & Thermodynamics (ETC13), Lausanne, Switzerland

With the design trends towards the More Electric Engine (MEE) for the More Electric Aircraft (MEA), areas for novel technologies can be pinpointed for multi-spool engines, introducing remarkable improvements to push the boundaries of propulsion techn... Read More about Performance improvement of the CFM56-3 aircraft engine by electric power transfer.

An enhanced second carrier harmonic cancellation method for multi-source DC electric power systems
Presentation / Conference Contribution
Wang, C., Yang, T., Bozhko, S., & Kulsangcharoen, P. (2019, October). An enhanced second carrier harmonic cancellation method for multi-source DC electric power systems. Presented at 45th Annual Conference of the IEEE Industrial Electronics Society (IECON 2019), Lisbon, Portugal

Multi-source DC power systems have been widely used in electric transportations, including more-electric aircraft, electric ship and electric vehicles. These systems normally involve in power electronic converters whose switching actions may cause cu... Read More about An enhanced second carrier harmonic cancellation method for multi-source DC electric power systems.

Optimal Weight Power System Design and Synthesis for More Electric Aircraft
Presentation / Conference Contribution
Recalde, A. A., Bozhko, S., & Atkin, J. (2020, August). Optimal Weight Power System Design and Synthesis for More Electric Aircraft. Presented at AIAA Propulsion and Energy 2020 Forum, VIRTUAL EVENT

© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. The synthesis of a power distribution architecture for More Electric Aircraft requires weight optimization in order to reduce energy consumption. The weight of... Read More about Optimal Weight Power System Design and Synthesis for More Electric Aircraft.

Linear Power Flow Characterization of DC Power Distribution Systems for MEA Optimization
Presentation / Conference Contribution
RECALDE, A., BOZHKO, S., & ATKIN, J. (2020, June). Linear Power Flow Characterization of DC Power Distribution Systems for MEA Optimization. Presented at 2020 IEEE Transportation Electrification Conference & Expo (iTEC 2020), Chicago, Illinois, USA (online)

The increased utilization of electrical energy in future aviation requires an efficient method to perform load flow for optimizing on-board operating conditions. Load flow models of electrical networks are complex to solve and requires iterative meth... Read More about Linear Power Flow Characterization of DC Power Distribution Systems for MEA Optimization.

Neutral Point Voltage Control Method for Three-Level Diode-Clamped Converter Based on Fourth Harmonic Current Injection
Presentation / Conference Contribution
Li, C., Yang, T., Bozhko, S., & Wheeler, P. (2018, September). Neutral Point Voltage Control Method for Three-Level Diode-Clamped Converter Based on Fourth Harmonic Current Injection. Presented at IEEE Energy Conversion Congress and Exposition (ECCE 2018), Portland, Oregon, USA

DC-link neutral point voltage balancing for three level neutral point clamped converters has been extensively investigated. Many effective methods have been reported with desirable performances under high power factor conditions. However, most of the... Read More about Neutral Point Voltage Control Method for Three-Level Diode-Clamped Converter Based on Fourth Harmonic Current Injection.

Trade-off Study of a High Power Density Starter-Generator for Turboprop Aircraft System
Presentation / Conference Contribution
Khowja, M. R., Vakil, G., Gerada, C., Yang, T., Bozhko, S., & Wheeler, P. (2019, October). Trade-off Study of a High Power Density Starter-Generator for Turboprop Aircraft System. Presented at 45th Annual Conference of the IEEE Industrial Electronics Society (IECON 2019), Lisbon, Portugal

Mechanically-driven actuators, compressors and pumps are being replaced by the aircraft manufacturers that shift the trend towards 'More Electric Aircraft' and hence reducing the mechanical linkages within the aircraft system. This elevates the depen... Read More about Trade-off Study of a High Power Density Starter-Generator for Turboprop Aircraft System.

Advanced smart grid power distribution system for More Electric Aircraft application
Presentation / Conference Contribution
Spagnolo, C., Sumsurooah, S., & Bozkho, S. (2019, October). Advanced smart grid power distribution system for More Electric Aircraft application. Presented at 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS), Ufa, Russia

This paper develops a finite state machine-based supervisory controller that applies a set of pre-defined energy management and safety rules to a representative aircraft electrical power system that includes an advanced smart grid power distribution... Read More about Advanced smart grid power distribution system for More Electric Aircraft application.

Development of LFT-based models for robust stability analysis of a generic electrical power system over all operating conditions
Presentation / Conference Contribution
Sumsurooah, S., Odavic, M., & Bozhko, S. (2015, March). Development of LFT-based models for robust stability analysis of a generic electrical power system over all operating conditions. Presented at 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), Aachen, Germany

This paper develops a method to analyse robust stability of a generic electrical power system for safe-critical applications over all operating conditions. Standard methods can guaranty stability under nominal conditions but do not take into account... Read More about Development of LFT-based models for robust stability analysis of a generic electrical power system over all operating conditions.

Dual Phase Shift Modulation Investigation of Half-Bridge-Active-Clamp Converter for Future Electrified Aircraft Applications
Presentation / Conference Contribution
Yan, X., Zhu, Y., Wang, Z., Yang, T., Bozhko, S., & Wheeler, P. (2023, July). Dual Phase Shift Modulation Investigation of Half-Bridge-Active-Clamp Converter for Future Electrified Aircraft Applications. Presented at 2023 IEEE Workshop on Power Electronics for Aerospace Applications, PEASA 2023, Nottingham, United Kingdom

Half bridge active clamp (HBAC) converter is designed for the achievement of a wider voltage conversion range, and it is employed to interface the power transfer between the high voltage and low voltage DC buses in future electrified aircraft applica... Read More about Dual Phase Shift Modulation Investigation of Half-Bridge-Active-Clamp Converter for Future Electrified Aircraft Applications.

Model Predictive Control for DC Offset Suppression of Dual Active Bridge Converter for More-Electric Aircraft Applications
Presentation / Conference Contribution
Zhu, Y., Wang, Z., Yang, T., Dragicevic, T., Bozhko, S., & Wheeler, P. (2021, June). Model Predictive Control for DC Offset Suppression of Dual Active Bridge Converter for More-Electric Aircraft Applications. Presented at 2021 ISIE-30th IEEE International Symposium on Industrial Electronics, Kyoto, Japan (online)

In this paper, the Dual Active Bridge (DAB) converter used to interface batteries for 270/28V on-board grid in More electric aircraft (MEA) applications is investigated. In order to transfer the desired rated power of 3kW, the low voltage terminal cu... Read More about Model Predictive Control for DC Offset Suppression of Dual Active Bridge Converter for More-Electric Aircraft Applications.

Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications
Presentation / Conference Contribution
Bai, G., Yang, T., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2023, July). Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications. Presented at 2023 IEEE Workshop on Power Electronics for Aerospace Applications, PEASA 2023, Nottingham, United Kingdom

To meet the increasing electrical power demand on More Electrical Aircraft (MEA), an advanced power generation architecture (APGA) is proposed. Within the APGA, both two generators produce electrical power and feed loads to the main DC bus through th... Read More about Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications.

Parasitic Inductance Impact of a High-Turn-Ratio Half Bridge Active Clamped Converter for More-Electric Aircraft Applications
Presentation / Conference Contribution
Zhu, Y., Yang, T., Wang, Z., Yan, X., Bozhko, S., & Wheeler, P. (2024, February). Parasitic Inductance Impact of a High-Turn-Ratio Half Bridge Active Clamped Converter for More-Electric Aircraft Applications. Presented at 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA

Within a More-Electric Aircraft (MEA) dc power distribution system, Half-Bridge-Active-Clamped (HBAC) converters can be used to control the power transfer between different dc buses, for example, between +/-270V to 28V dc buses. However, due to the r... Read More about Parasitic Inductance Impact of a High-Turn-Ratio Half Bridge Active Clamped Converter for More-Electric Aircraft Applications.

Modelling and Sizing Framework for Hybrid-Electric Aircraft Architecture Development
Presentation / Conference Contribution
Wise, A., Kolisnichenko, A., Bozhko, S., Sumsurooah, S., & Yeoh, S. (2023, November). Modelling and Sizing Framework for Hybrid-Electric Aircraft Architecture Development. Presented at 2023 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Chiang Mai, Thailand

This project aims to develop an electrical system for a hybrid-electric, regional aircraft as part of the drive towards more sustainable transportation. It wants to reduce the aviation industry's contribution to carbon emissions, looking at more gree... Read More about Modelling and Sizing Framework for Hybrid-Electric Aircraft Architecture Development.

Power Flow Analysis of Advanced Power Generation Centre for More Electric Aircraft
Presentation / Conference Contribution
Bai, G., Bozhko, S., Yang, T., Wheeler, P., & Yeoh, S. S. (2023, November). Power Flow Analysis of Advanced Power Generation Centre for More Electric Aircraft. Presented at 2023 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Chiang Mai, Thailand

The more-electric aircraft (MEA) has been seen as the most major trend in the aerospace industry. With the increase in electrified loads, there is the need to generate more electrical power on-board aircraft. Considering regional jet sized aircraft,... Read More about Power Flow Analysis of Advanced Power Generation Centre for More Electric Aircraft.

Stability and robustness analysis of a DC/DC power conversion system under operating conditions uncertainties
Presentation / Conference Contribution
Sumsurooah, S., Bozhko, S., Odavic, M., & Boroyevich, D. (2015, November). Stability and robustness analysis of a DC/DC power conversion system under operating conditions uncertainties. Presented at IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan

Stability margins of the switch-mode DC/DC power conversion systems are very sensitive to variations in load and system parameters. In aerospace applications these systems can be exposed to considerable variations in temperature that can cause large... Read More about Stability and robustness analysis of a DC/DC power conversion system under operating conditions uncertainties.

Wind turbine-energy storage control system for delivering constant demand power shared by DFIGs through droop characteristics
Presentation / Conference Contribution
Fazeli, M., Asher, G., Klumpner, C., Bozhko, S., Yao, L., & Bazargan, M. (2009, September). Wind turbine-energy storage control system for delivering constant demand power shared by DFIGs through droop characteristics. Presented at 13th European Conference on Power Electronics and Applications, Barcelona, Spain

This paper investigates embedding Energy Storage (ES) with multiple wind turbines in order to deliver to the grid a smooth and constant power as demanded by the system operator. The demand power is shared by DFIGs proportional to their ratings utiliz... Read More about Wind turbine-energy storage control system for delivering constant demand power shared by DFIGs through droop characteristics.

A Simple PWM Strategy for Three-Level NPC Converters in Aircraft Electric Starter/Generator System With Improved DC-Link Voltage Utilization and Reduced Common-Mode Voltage
Presentation / Conference Contribution
Guo, F., Yang, T., Yeoh, S. S., Bozhko, S., Wheeler, P., & Diab, A. M. (2021, October). A Simple PWM Strategy for Three-Level NPC Converters in Aircraft Electric Starter/Generator System With Improved DC-Link Voltage Utilization and Reduced Common-Mode Voltage. Presented at 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada

Due to the employment of three-level neutral-point-clamped (3L-NPC) converters in the aircraft electric starter/generator (ESG) systems, the pulse-width-modulation (PWM) strategy plays a significant role in the converter-fed PMSM drives. However, the... Read More about A Simple PWM Strategy for Three-Level NPC Converters in Aircraft Electric Starter/Generator System With Improved DC-Link Voltage Utilization and Reduced Common-Mode Voltage.

Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application
Presentation / Conference Contribution
Yan, X., Zhu, Y., Wang, Z., Yang, T., Bozhko, S., & Wheeler, P. (2023, March). Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application. Presented at 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, ESARS-ITEC 2023, Venice, Italy

Dual active bridge converter (DAB) is an important power electronics in the DC distribution system of electric aircraft. It is used to convert generated high DC voltage to lower DC voltage, and it can be used between battery and low voltage bus to st... Read More about Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application.

An Advanced Power Generation Architecture for More-Electric Aircraft Applications
Presentation / Conference Contribution
Bai, G., Yang, T., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2023, March). An Advanced Power Generation Architecture for More-Electric Aircraft Applications. Presented at 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Venice, Italy

The trend towards development of More Electric Aircraft (MEA) has been driven by increased fuel fossil prices and stricter environmental policies. With breakthroughs in power electronic systems and electrical machines, the targets of MEA to reduce th... Read More about An Advanced Power Generation Architecture for More-Electric Aircraft Applications.

Optimised architecture design for an MEA power distribution system considering load profile and fault-tolerance
Presentation / Conference Contribution
Wang, X., Atkin, J., Yeoh, S., & Bozhko, S. (2023, March). Optimised architecture design for an MEA power distribution system considering load profile and fault-tolerance. Presented at International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Venice, Italy

With the development of More Electric Aircraft (MEA), novel power distribution systems (PDSs) are required to meet significantly increased electrical load demands onboard. Nevertheless, newer designs must comply with the strict flight operational and... Read More about Optimised architecture design for an MEA power distribution system considering load profile and fault-tolerance.

AC/DC Converter Topologies Comparison for More Electric Aircraft Applications
Presentation / Conference Contribution
Khera, F. A., Gerada, C., Bozhko, S., & Wheeler, P. W. (2022, December). AC/DC Converter Topologies Comparison for More Electric Aircraft Applications. Presented at 7th IEEE Southern Power Electronics Conference (IEEE SPEC 2022), Nadi, Fiji

This paper compares the potential AC/DC power converter topologies that are appropriate for medium voltage and medium/high power aircraft applications. The power converter's rated power and the DC distribution voltage level in this application assume... Read More about AC/DC Converter Topologies Comparison for More Electric Aircraft Applications.

Performance Analysis of Complex Vector Discrete Current Controller for High-Speed Permanent Magnet Machines
Presentation / Conference Contribution
Diab, A. M., Aboelhassan, A., Wang, S., Guo, F., Yeoh, S. S., Bozhko, S., Rashed, M., & Galea, M. (2022, December). Performance Analysis of Complex Vector Discrete Current Controller for High-Speed Permanent Magnet Machines. Presented at 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China

Discrete synchronous reference frame proportional integral Current Controller (CC) delivers superior control performance for high-speed drives due to its ability to accurately compensate for cross-coupling terms. Complete compensation can only be ach... Read More about Performance Analysis of Complex Vector Discrete Current Controller for High-Speed Permanent Magnet Machines.

Half-Bridge-Active-Clamp Converter with High Step-down Capabilities for More Electric Aircraft Applications
Presentation / Conference Contribution
Zhu, Y., Yan, X., Wang, Z., Yang, T., Bozhko, S., & Wheeler, P. (2022, October). Half-Bridge-Active-Clamp Converter with High Step-down Capabilities for More Electric Aircraft Applications. Presented at IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium

A Half-bridge-active-clamp (HBAC) converter is used as an alternative to replace Dual active bridge (DAB) converter for 540V/28V on-board grid in more electric aircraft applications. The HBAC converter provides an opportunity to reduce the turn-ratio... Read More about Half-Bridge-Active-Clamp Converter with High Step-down Capabilities for More Electric Aircraft Applications.

Analysis and Design of Battery Controller for More Electric Aircraft Application
Presentation / Conference Contribution
Mohamed, M. A. A., Yeoh, S., Atkin, J., Khalaf, M., & Bozhko, S. (2021, September). Analysis and Design of Battery Controller for More Electric Aircraft Application. Presented at 2021 IEEE International Power and Renewable Energy Conference (IPRECON), Kollam, India

This paper deals with innovative multi-function battery controller with seamless transition between controllers for future MEA platforms. The battery controller performs different functions i.e. providing DC power, maintaining DC bus voltage, control... Read More about Analysis and Design of Battery Controller for More Electric Aircraft Application.

Direct vector control of induction motors based on rotor resistance-invariant rotor flux observer
Presentation / Conference Contribution
Bozhko, S., Kovbasa, S., Nikonenko, Y., & Peresada, S. (2018, November). Direct vector control of induction motors based on rotor resistance-invariant rotor flux observer. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK

A novel speed-flux tracking controller for induction motors has been developed and experimentally verified. Direct rotor flux field oriented controller is designed for current-fed induction motor model on the base of full order hybrid continuous time... Read More about Direct vector control of induction motors based on rotor resistance-invariant rotor flux observer.

A Twin Spool Engine Emulator for the Study of Power Exchange Idea
Presentation / Conference Contribution
Enalou, H. B., Rashed, M., Kulsangcharoen, P., Chowdhury, S., & Bozhko, S. (2018, November). A Twin Spool Engine Emulator for the Study of Power Exchange Idea. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK

The More Electric Aircraft (MEA) engine, with electrical machines on both HP and LP shafts, makes it possible to transfer power electrically from one spool to another. Preliminary results have shown considerable improvement in turbofan performance in... Read More about A Twin Spool Engine Emulator for the Study of Power Exchange Idea.

Performance Analysis of PMSM for High-Speed Starter-Generator System
Presentation / Conference Contribution
Diab, A., Gerada, C., Rashed, M., Bozhko, S., & Li, J. (2018, November). Performance Analysis of PMSM for High-Speed Starter-Generator System. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK

© 2018 IEEE. This paper presents the operating characteristics of surface-mounted permanent magnet synchronous machine taking into account the influence of stator resistance and inductance variation at high frequencies, whose effect are always neglec... Read More about Performance Analysis of PMSM for High-Speed Starter-Generator System.

A Review of Torque Ripple Minimization Techniques in Switched Reluctance Machine
Presentation / Conference Contribution
Velmurugan, G., Bozhko, S., & Yang, T. (2018, November). A Review of Torque Ripple Minimization Techniques in Switched Reluctance Machine. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK

Torque ripple is a major problem in Switched Reluctance Machine (SRM). Despite the high torque ripple and vibration, SRM has many advantages over many other machines. In this paper, the torque ripple minimization control techniques commonly used are... Read More about A Review of Torque Ripple Minimization Techniques in Switched Reluctance Machine.

3L-NPC AC-DC power converter using virtual space vector PWM with optimal switching sequence based on G-h coordinate
Presentation / Conference Contribution
Guo, F., Yang, T., Bozhko, S., & Wheeler, P. (2018, November). 3L-NPC AC-DC power converter using virtual space vector PWM with optimal switching sequence based on G-h coordinate. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC)

An Enhanced Power Generation Centre for More Electric Aircraft Applications
Presentation / Conference Contribution
Lang, X., Yang, T., Enalou, H. B., Bozhko, S., & Wheeler, P. (2018, November). An Enhanced Power Generation Centre for More Electric Aircraft Applications. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham

© 2018 IEEE. The more-electric aircraft (MEA) concept has become a major trend due to its multiple advantages. Many functions which are conventionally driven by pneumatic, hydraulic and mechanical power systems are replaced by electrical ones onboard... Read More about An Enhanced Power Generation Centre for More Electric Aircraft Applications.

Thermal Analysis of High Power High Voltage DC Solid State Power Controller (SSPC) for Next Generation Civil Tilt Rotor-craft
Presentation / Conference Contribution
Adhikari, J., Yang, T., Zhang, J., Rashed, M., Bozhko, S., & Wheeler, P. (2018, November). Thermal Analysis of High Power High Voltage DC Solid State Power Controller (SSPC) for Next Generation Civil Tilt Rotor-craft. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK

This paper explores different possible topologies of a high-power high-voltage bidirectional DC solid state power controller (SSPC) for aerospace applications. The most suitable topology is then selected for design and implementation of the SSPC. A d... Read More about Thermal Analysis of High Power High Voltage DC Solid State Power Controller (SSPC) for Next Generation Civil Tilt Rotor-craft.

Comparative Study Of Back EMF Based Sensorless Control Methods For Dual Three-Phase PMSM
Presentation / Conference Contribution
Fan, L., Yang, T., Rashed, M., & Bozhko, S. (2018, November). Comparative Study Of Back EMF Based Sensorless Control Methods For Dual Three-Phase PMSM. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham

Multiphase electrical machines have gained increased attentions recently due to its fault tolerance capability which is of great importance for more-electric aircraft application. This paper studies sensorless control of a high-speed dual three-phase... Read More about Comparative Study Of Back EMF Based Sensorless Control Methods For Dual Three-Phase PMSM.

Modulation Limit Based Control Strategy for More Electric Aircraft Generator System
Presentation / Conference Contribution
Shen Yeoh, S., Rashed, M., & Bozhko, S. Modulation Limit Based Control Strategy for More Electric Aircraft Generator System

Vector based control strategies have been extensively employed for drive systems, and in recent times to the More Electric Aircraft (MEA) generator based systems. The control schemes should maintain the bus voltage and adhere to the generator system... Read More about Modulation Limit Based Control Strategy for More Electric Aircraft Generator System.

Optimal Power Flow Based Architecture Design for Electrical Power System in More-Electric Aircraft
Presentation / Conference Contribution
Wang, X., Atkin, J., Bozhko, S., & Hill, C. I. (2019, October). Optimal Power Flow Based Architecture Design for Electrical Power System in More-Electric Aircraft. Presented at IEEE 45th Annual Conference of the Industrial Electronics Society (IECON'2019), Lisbon, Portugal

When designing an electric power system (EPS) architecture for a more electric aircraft (MEA), the total weight of the system is treated as one of the most important criteria. For the weight saving purpose, this paper proposes an optimal power flow (... Read More about Optimal Power Flow Based Architecture Design for Electrical Power System in More-Electric Aircraft.

Generator overload reduction using smart power management
Presentation / Conference Contribution
Spagnolo, C., Sumsurooah, S., Hill, C., & Bozhko, S. (2018, November). Generator overload reduction using smart power management. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC)

Weight reduction is a key driver in the aerospace sector. Every kilogram of weight reduction has significant benefits over the aircraft’s life cycle. This paper introduces a smart power management technique which is able to reduce the overload on the... Read More about Generator overload reduction using smart power management.

Variable DC Bus Voltage Control Scheme for the More Electric Aircraft Power Generation System
Presentation / Conference Contribution
Yeoh, S. S., Rashed, M., Bozhko, S., & Sanders, M. (2018, November). Variable DC Bus Voltage Control Scheme for the More Electric Aircraft Power Generation System. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Nottingham

© 2018 IEEE. This paper aims to introduce a control scheme that offers variable voltage control for more electric aircraft electrical power systems. This control scheme allows increased power intake to the loads by variation of the bus voltage in add... Read More about Variable DC Bus Voltage Control Scheme for the More Electric Aircraft Power Generation System.

A reliability approach for the MEA power system architecture design optimization problem
Presentation / Conference Contribution
Recalde, A., Bozhko, S., Atkin, J., & Hill, C. (2018, November). A reliability approach for the MEA power system architecture design optimization problem. Presented at 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC)

In the literature, there has been thorough research on reliability-based design in different fields. However, aircraft power system investigations have mostly dealt with sub-system optimization. Hence, there is considerable potential to excel innova... Read More about A reliability approach for the MEA power system architecture design optimization problem.

A semi-flooded cooling for a high speed machine: Concept, design and practice of an oil sleeve
Presentation / Conference Contribution
Xu, Z., La Rocca, A., Arumugam, P., Pickering, S. J., Gerada, C., Bozhko, S., Gerada, D., & Zhang, H. (2017, October). A semi-flooded cooling for a high speed machine: Concept, design and practice of an oil sleeve. Presented at IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China

This paper proposes a semi-flooded cooling concept for a high speed machine design. The electrical machine considered is for an aircraft starter-generator system where power density and efficiency are crucial. In order to achieve the high power densi... Read More about A semi-flooded cooling for a high speed machine: Concept, design and practice of an oil sleeve.

Maximum torque-per-amp tracking control of saturated induction motors
Presentation / Conference Contribution
Peresada, S., Kovbasa, S., Dymko, S., & Bozhko, S. (2017, November). Maximum torque-per-amp tracking control of saturated induction motors. Presented at 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine

An improved maximum torque per Ampere (MTPA) controller for induction motor (IM) drives is presented. The proposed MTPA field oriented controller guarantees asymptotic torque tracking of smooth reference trajectories and maximises the torque per Ampe... Read More about Maximum torque-per-amp tracking control of saturated induction motors.

Analytical modelling approach for switched reluctance machines with deep saturation
Presentation / Conference Contribution
Ding, X., Rashed, M., Hill, C. I., & Bozhko, S. (2016, November). Analytical modelling approach for switched reluctance machines with deep saturation. Presented at 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Toulouse, France

This paper presents an analytical modelling approach for Switched Reluctance Machines (SRMs) with a wide saturation range. There are many existing analytical modelling approaches in literature that give good accuracy, however most do not consider mod... Read More about Analytical modelling approach for switched reluctance machines with deep saturation.

Potential Improvements in Turbofan's Performance by Electric Power Transfer
Presentation / Conference Contribution
Enalou, H. B., Le-Peuvedic, J. M., Rashed, M., & Bozhko, S. (2018, May). Potential Improvements in Turbofan's Performance by Electric Power Transfer. Presented at Aerospace Systems and Technology Conference, Doubletree Club Hotel, Orange County Airport 7 Hutton Centre Drive Santa Ana, CA 92707

© 2018 SAE International. All Rights Reserved. Bleeding in engines is essential to mitigate the unmatched air massflow between low and High Pressure (HP) compressors at low speed settings, thus avoiding unstable operation due to surge and phenomena.... Read More about Potential Improvements in Turbofan's Performance by Electric Power Transfer.

Investigating Electrical Drive Performance Employing Model Predictive Control and Active Disturbance Rejection Control Algorithms
Presentation / Conference Contribution
Aboelhassan, A., Diab, A. M., Galea, M., & Bozhko, S. (2020, November). Investigating Electrical Drive Performance Employing Model Predictive Control and Active Disturbance Rejection Control Algorithms. Presented at 23rd International Conference on Electrical Machines and Systems, ICEMS 2020, Hamamatsu, Japan

© 2020 The Institute of Electrical Engineers of Japan. Many issues can degrade the electrical drive performance such as cross-coupling, time delay, external disturbances, and parameter variation. The Synchronous Reference Frame (SRF) PI Current Contr... Read More about Investigating Electrical Drive Performance Employing Model Predictive Control and Active Disturbance Rejection Control Algorithms.

Smart Controller Design for Safety Operation of the MEA Electrical Distribution System
Presentation / Conference Contribution
Spagnolo, C., Sumsurooah, S., Hill, C. I., & Bozhko, S. (2018, October). Smart Controller Design for Safety Operation of the MEA Electrical Distribution System. Presented at IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA

As the electrical network of future aircraft become more and more complex, safety issues related with electrification need to be addressed. This paper shows that this can be achieved by developing an advanced control strategy and then applying it, th... Read More about Smart Controller Design for Safety Operation of the MEA Electrical Distribution System.

A Power Generation Center with Back-to-back Converter Considering Post-fault Operation for MEA Application
Presentation / Conference Contribution
Lang, X., Yang, T., Enalou, H. B., Wheeler, P., & Bozhko, S. (2019, August). A Power Generation Center with Back-to-back Converter Considering Post-fault Operation for MEA Application. Presented at 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China

This paper proposes a new power generation centre (PGC) for the engine of more electric aircraft (MEA) application. In this PGC, a starter/generator is connected to the high-pressure (HP) spool to start the engine in the start process and generate el... Read More about A Power Generation Center with Back-to-back Converter Considering Post-fault Operation for MEA Application.

A Dual-Channel Enhanced Power Generation Architecture with Back-to-back Converter for MEA Application
Presentation / Conference Contribution
Lang, X., Yang, T., Enalou, H. B., Li, C., Bozhko, S., & Wheeler, P. (2019, May). A Dual-Channel Enhanced Power Generation Architecture with Back-to-back Converter for MEA Application. Presented at 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA

This paper presents a new electricity power generation architecture for the engine system of more electric aircraft (MEA). A starter/generator (SG) is connected to high-pressure (HP) spool, and a generator is attached to low-pressure (LP) spool. Thei... Read More about A Dual-Channel Enhanced Power Generation Architecture with Back-to-back Converter for MEA Application.

Open-Switch Fault Diagnosis for Three-Phase AC-DC Power Converter with Park's Vector Method Considering Modulation Schemes
Presentation / Conference Contribution
Guo, F., Yang, T., Bozhko, S., & Wheeler, P. (2019, August). Open-Switch Fault Diagnosis for Three-Phase AC-DC Power Converter with Park's Vector Method Considering Modulation Schemes. Presented at 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France

Open-switch fault accounts for large proportions among failures in power conversion system. Previously, fault defection methods are carried out by researches from transient period or circuit configuration with complicated algorithms. This paper revea... Read More about Open-Switch Fault Diagnosis for Three-Phase AC-DC Power Converter with Park's Vector Method Considering Modulation Schemes.

A Novel Virtual Space Vector Modulation Scheme for Three-Level NPC Power Converter with Neutral-Point Voltage Balancing and Common-Mode Voltage Reduction for Electric Starter/Generator System in More-Electric-Aircraft
Presentation / Conference Contribution
Guo, F., Yang, T., Bozhko, S., & Wheeler, P. (2019, September). A Novel Virtual Space Vector Modulation Scheme for Three-Level NPC Power Converter with Neutral-Point Voltage Balancing and Common-Mode Voltage Reduction for Electric Starter/Generator System in More-Electric-Aircraft. Presented at IEEE Energy Conversion Congress and Exposition (ECCE 2019), Baltimore, MD, USA

In recent years, More-Electric-Aircraft (MEA) becomes the state-of-the-art. One of the essential issue need to be solved is neutral-point (NP) voltage drift in three-level neutral-point-clamped (3L-NPC) power converter because of low power factor (PF... Read More about A Novel Virtual Space Vector Modulation Scheme for Three-Level NPC Power Converter with Neutral-Point Voltage Balancing and Common-Mode Voltage Reduction for Electric Starter/Generator System in More-Electric-Aircraft.

Optimised low voltage loads allocation for MEA electrical power systems
Presentation / Conference Contribution
Spagnolo, C., Madonna, V., Sumsurooah, S., Hill, C. I., & Bozhko, S. (2019, August). Optimised low voltage loads allocation for MEA electrical power systems. Presented at 2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Indianapolis, IN, USA

This paper proposes a smart controller design for an automated power load allocation for the more electric aircraft application. As the aircraft manufacturers are moving towards more electrified solutions, power management and optimization are becomi... Read More about Optimised low voltage loads allocation for MEA electrical power systems.

Piecewise Modelling Approach for Specific Switched Reluctance Machines
Presentation / Conference Contribution
Velmurugan, G., Yeoh, S. S., Yang, T., & Bozhko, S. (2019, October). Piecewise Modelling Approach for Specific Switched Reluctance Machines. Presented at 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS), Ufa, Russia

Switched Reluctance Machine (SRM) is a very basic and simple electrical machine in structure with winding only at its stator. SRM has widely been considered for possible usages in modern aircrafts through the development of More Electric Aircraft (ME... Read More about Piecewise Modelling Approach for Specific Switched Reluctance Machines.

An Improved Control Strategy for Switched Reluctance Generator System in More Electric Aircraft
Presentation / Conference Contribution
Velmurugan, G., YEOH, S. S., Yang, T., & Bozhko, S. (2019, December). An Improved Control Strategy for Switched Reluctance Generator System in More Electric Aircraft. Presented at 5th IEEE Southern Power Electronics Conference & 15th Brazilian Power Electronics Conference (COBEP/SPEC 2019)), Sao Paulo, Brazil

Switched Reluctance Machines (SRM) has emerged as an important possible technology for usage in More Electric Aircraft (MEA) in particular as a starter/generator. As a starter/generator, the SRM operates as a generator as well as a motor (starter). T... Read More about An Improved Control Strategy for Switched Reluctance Generator System in More Electric Aircraft.

Power Allocation and Generator Sizing Optimisation of More-Electric Aircraft On-board Electrical Power during Different Flight Stages
Presentation / Conference Contribution
Wang, X., Atkin, J., Hill, C., & Bozhko, S. (2019, August). Power Allocation and Generator Sizing Optimisation of More-Electric Aircraft On-board Electrical Power during Different Flight Stages. Presented at AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN

The development of future More Electric Aircraft (MEA) requires exploitation of light-weighted on-board Electrical Power System (EPS) architectural design and energy saving power management strategies. Seeking for the optimal solutions in these key a... Read More about Power Allocation and Generator Sizing Optimisation of More-Electric Aircraft On-board Electrical Power during Different Flight Stages.

Post -Fault Compensation Control Strategy for Multi-Three-Phase PMSM under Open-Circuit and Short-Circuit Condition
Presentation / Conference Contribution
Rahman, A. A., Galassini, A., Degano, M., Abbas, H., & Bozhko, S. (2019, April). Post -Fault Compensation Control Strategy for Multi-Three-Phase PMSM under Open-Circuit and Short-Circuit Condition. Presented at 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece

This paper presents two post-fault compensation strategies for the distributed current control of a nine-phase Permanent-Magnet Synchronous Machine (PMSM). The dynamic performance in faulty condition is guaranteed by keeping the current loop bandwidt... Read More about Post -Fault Compensation Control Strategy for Multi-Three-Phase PMSM under Open-Circuit and Short-Circuit Condition.

Decoupled Model for Asymmetrical Dual Three Phase Permanent Magnet Synchronous Machine
Presentation / Conference Contribution
Chen, Y., Bozhko, S., Fan, L., Yang, T., & Khowja, M. R. (2019, May). Decoupled Model for Asymmetrical Dual Three Phase Permanent Magnet Synchronous Machine. Presented at IEMDC 2019 - International Electric Machines & Drives Conference, San Diego, CA, USA

This paper presents a decoupled modeling method for asymmetrical dual three phase (DTP) permanent magnet synchronous machine (PMSM). Due to the special structure of this machine, traditional decoupled method cannot be applied on it. This paper propos... Read More about Decoupled Model for Asymmetrical Dual Three Phase Permanent Magnet Synchronous Machine.

A SiC based 2-Level Power Converter for Shape-and-Space-Restricted Aerospace Applications
Presentation / Conference Contribution
Nasir, U., Chowdhury, S., La Rocca, A., Chen, Y., Yang, T., Wheeler, P., Gerada, C., & Bozhko, S. (2019, July). A SiC based 2-Level Power Converter for Shape-and-Space-Restricted Aerospace Applications. Presented at 2019 IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS), Toulouse, France

Recent advancements in the power electronic device technologies, such as wide-band-gap devices including Silicon-Carbide (SiC) and Galium-Nitride (GaN), are acting as an enabling factor in development of compact power electronic systems. More specifi... Read More about A SiC based 2-Level Power Converter for Shape-and-Space-Restricted Aerospace Applications.

Neural Network based Weighting Factor Selection of MPC for Optimal Battery and Load Management in MEA
Presentation / Conference Contribution
Wang, X., Gao, Y., Atkin, J., & Bozhko, S. (2020, November). Neural Network based Weighting Factor Selection of MPC for Optimal Battery and Load Management in MEA. Presented at 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan

This paper presents a Neural Network (NN)-based weighting factor (WF) selection method for the multi-objective cost function in Model Predictive Control (MPC). MPC is adopted for scheduling the loads and charging/discharging the battery intelligently... Read More about Neural Network based Weighting Factor Selection of MPC for Optimal Battery and Load Management in MEA.

Machine Learning Based Correction Model in PMSM Power Loss Estimation for More-Electric Aircraft Applications
Presentation / Conference Contribution
Gao, Y., Yang, T., Wang, X., Bozhko, S., & Wheeler, P. (2020, November). Machine Learning Based Correction Model in PMSM Power Loss Estimation for More-Electric Aircraft Applications. Presented at 23rd International Conference on Electrical Machines and Systems, ICEMS 2020, Hamamatsu, Japan

This study utilizes the machine learning (ML) technique to estimate the power loss of surface-mounted Permanent Magnet Synchronous Motor (PMSM) for More-Electric Aircraft (MEA). Existing approaches do not consider ML methods in power loss calculation... Read More about Machine Learning Based Correction Model in PMSM Power Loss Estimation for More-Electric Aircraft Applications.

Experimental study of power exchange using a twin spool engine emulator
Presentation / Conference Contribution
Enalou, H. B., Rashed, M., Kulsangcharoen, P., Chowdhury, S., & Bozhko, S. (2018, November). Experimental study of power exchange using a twin spool engine emulator. Presented at 5th International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS) and International Transportation Electrification Conference (ITECH), Nottingham, UK

The More Electric Aircraft (MEA) nad , with electrical machines on both HP and LP shafts and the advancements in power electronics, makes it possible to transfer power electrically from one spool to another. Preliminary results have shown considerabl... Read More about Experimental study of power exchange using a twin spool engine emulator.

A preliminary study into turbofan performance with LP-HP power exchange
Presentation / Conference Contribution
Enalou, H. B., Bozhko, S., Rashed, M., & Kulsangcharoen, P. (2018, May). A preliminary study into turbofan performance with LP-HP power exchange. Presented at Montreal 2018 Global Power and Propulsion Forum

Once an engine is designed, its Low Pressure (LP) and High Pressure (HP) shaft speeds are inevitably thermodynamically coupled which imposes certain operational constraints. These spools are not mechanically connected, however, in future more electri... Read More about A preliminary study into turbofan performance with LP-HP power exchange.

Potential improvements in turbofan idle steady state and transient performance
Presentation / Conference Contribution
Enalou, H. B., Rashed, M., & Bozhko, S. (2018, November). Potential improvements in turbofan idle steady state and transient performance. Presented at SAE 2018 The Aerospace Systems and Technology Conference, London, UK

Once the engine is designed, imbalanced air massflow between LP and HP compressors at low speed settings is inevitable which enforces implementing of bleeding. However, by emerging More Electric Aircraft (MEA) with electrical machines on both HP and... Read More about Potential improvements in turbofan idle steady state and transient performance.