Skip to main content

Research Repository

Advanced Search

Dr LISA WHITE's Outputs (42)

Translation of remote control regenerative technologies for bone repair (2018)
Journal Article
Markides, H., McLaren, J. S., Telling, N. D., Alom, N., Al-Mutheffer, E. A., Oreffo, R., Zannettino, A., Scammell, B. E., White, L. J., & El-Haj, A. (2018). Translation of remote control regenerative technologies for bone repair. npj Regenerative Medicine, 3(9), 1-12. https://doi.org/10.1038/s41536-018-0048-1

The role of biomechanical stimuli, or mechanotransduction, in normal bone homeostasis and repair is understood to facilitate effective osteogenesis of mesenchymal stem cells (MSCs) in vitro. Mechanotransduction has been integrated into a multitude of... Read More about Translation of remote control regenerative technologies for bone repair.

A biomaterials approach to influence stem cell fate in injectable cell-based therapies (2018)
Journal Article
Amer, M. H., Rose, F. R., Shakesheff, K. M., & White, L. J. (2018). A biomaterials approach to influence stem cell fate in injectable cell-based therapies. Stem Cell Research and Therapy, 9(39), https://doi.org/10.1186/s13287-018-0789-1

Background: Numerous stem cell therapies use injection-based administration to deliver high density cell preparations. However, cell retention rates as low as 1% have been observed within days of transplantation. This study investigated the effects o... Read More about A biomaterials approach to influence stem cell fate in injectable cell-based therapies.

Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures (2017)
Journal Article
Kumar, D., Workman, V., O'Brien, M. C., McLaren, J. S., White, L. J., Ragunath, K., Saiani, A., Gough, J., & Rose, F. R. (2017). Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures. Advanced Functional Materials, 27(38), Article 1702424. https://doi.org/10.1002/adfm.201702424

Endoscopic treatment of Barrett’s oesophagus often leads to further damage of healthy tissue causing fibrotic tissue formation termed as strictures. This study shows that synthetic, self-assembling peptide hydrogels (PeptiGelDesign) support the activ... Read More about Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures.

Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges (2017)
Journal Article
Amer, M. H., Rose, F. R., Shakesheff, K. M., Modo, M., & White, L. J. (in press). Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. npj Regenerative Medicine, 2, Article 23. https://doi.org/10.1038/s41536-017-0028-x

Significant progress has been made during the past decade towards the clinical adoption of cell- based therapeutics. However, existing cell delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells... Read More about Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges.

Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration (2017)
Journal Article
Paduano, F., Marrelli, M., Alom, N., Amer, M. H., White, L. J., Shakesheff, K. M., & Tatullo, M. (in press). Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 28(8), https://doi.org/10.1080/09205063.2017.1301770

Dental pulp tissue represents a source of mesenchymal stem cells (MSCs) that have a strong differentiation potential towards the osteogenic lineage. The objective of the current study was to examine in vitro osteogenic induction of dental pulp stem c... Read More about Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration.

Macrophage phenotype in response to ECM bioscaffolds (2017)
Journal Article
Huleihel, L., Dziki, J. L., Bartolacci, J. G., Rausch, T., Scarritt, M. E., Cramer, M. C., Vorobyov, T., LoPresti, S. T., Swinehart, I. T., White, L. J., Brown, B. N., & Badylak, S. F. (2017). Macrophage phenotype in response to ECM bioscaffolds. Seminars in Immunology, 29, https://doi.org/10.1016/j.smim.2017.04.004

Macrophage presence and phenotype are critical determinants of the healing response following injury. Downregulation of the pro-inflammatory macrophage phenotype has been associated with the therapeutic use of bioscaffolds composed of extracellular... Read More about Macrophage phenotype in response to ECM bioscaffolds.

Surface modification of PdlLGA microspheres with gelatine methacrylate: evaluation of adsorption, entrapment, and oxygen plasma treatment approaches (2017)
Journal Article
Baki, A., Rahman, C. V., White, L. J., Scurr, D. J., Qutachi, O., & Shakesheff, K. M. (2017). Surface modification of PdlLGA microspheres with gelatine methacrylate: evaluation of adsorption, entrapment, and oxygen plasma treatment approaches. Acta Biomaterialia, 53, 450-459. https://doi.org/10.1016/j.actbio.2017.01.042

Injectable poly (dl-lactic-co-glycolic acid) (PdlLGA) microspheres are promising candidates as biodegradable controlled release carriers for drug and cell delivery applications; however, they have limited functional groups on the surface to enable de... Read More about Surface modification of PdlLGA microspheres with gelatine methacrylate: evaluation of adsorption, entrapment, and oxygen plasma treatment approaches.

The impact of detergents on the tissue decellularization process: a ToF-SIMS study (2016)
Journal Article
White, L. J., Taylor, A. J., Faulk, D. M., Keane, T. J., Saldin, L. T., Reing, J. E., Swinehart, I. T., Turner, N. J., Ratner, B. D., & Badylak, S. F. (2017). The impact of detergents on the tissue decellularization process: a ToF-SIMS study. Acta Biomaterialia, 50, https://doi.org/10.1016/j.actbio.2016.12.033

Biologic scaffolds are derived from mammalian tissues, which must be decellularized to remove cellular antigens that would otherwise incite an adverse immune response. Although widely used clinically, the optimum balance between cell removal and the... Read More about The impact of detergents on the tissue decellularization process: a ToF-SIMS study.

Extracellular matrix hydrogels from decellularized tissues: structure and function (2016)
Journal Article
Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., & Badylak, S. F. (2017). Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomaterialia, 49, https://doi.org/10.1016/j.actbio.2016.11.068

Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized... Read More about Extracellular matrix hydrogels from decellularized tissues: structure and function.

Extracellular matrix-derived hydrogels for dental stem cell delivery (2016)
Journal Article
Viswanath, A., Vanacker, J., Germain, L., Leprince, J. G., Diogenes, A., Shakesheff, K. M., White, L. J., & des Rieux, A. (2016). Extracellular matrix-derived hydrogels for dental stem cell delivery. Journal of Biomedical Materials Research Part A, 105(1), 319-328. https://doi.org/10.1002/jbm.a.35901

Decellularised mammalian extracellular matrices (ECM) have been widely accepted as an ideal substrate for repair and remodelling of numerous tissues in clinical and pre-clinical studies. Recent studies have demonstrated the ability of ECM scaffolds d... Read More about Extracellular matrix-derived hydrogels for dental stem cell delivery.

Restoring Mucosal Barrier Function and Modifying Macrophage Phenotype with an Extracellular Matrix Hydrogel: Potential Therapy for Ulcerative Colitis (2016)
Journal Article
Keane, T. J., Dziki, J., Sobieski, E., Smoulder, A., Castleton, A. A., Turner, N. J., White, L. J., & Badylak, S. F. (2017). Restoring Mucosal Barrier Function and Modifying Macrophage Phenotype with an Extracellular Matrix Hydrogel: Potential Therapy for Ulcerative Colitis. Journal of Crohn's and Colitis, 11(3), 360-368. https://doi.org/10.1093/ecco-jcc/jjw149

Background and Aims: Despite advances in therapeutic options, more than half of all patients with ulcerative colitis [UC] do not achieve long-term remission, many require colectomy, and the disease still has a marked negative impact on quality of lif... Read More about Restoring Mucosal Barrier Function and Modifying Macrophage Phenotype with an Extracellular Matrix Hydrogel: Potential Therapy for Ulcerative Colitis.

A detailed assessment of varying ejection rate on delivery efficiency of mesenchymal stem cells using narrow-bore needles (2016)
Journal Article
Rose, F., Shakesheff, K., White, L., & Amer, M. (2016). A detailed assessment of varying ejection rate on delivery efficiency of mesenchymal stem cells using narrow-bore needles. Stem Cells Translational Medicine, 5(3), 366-378. https://doi.org/10.5966/sctm.2015-0208

As the number of clinical trials exploring cell therapy rises, a thorough understanding of the limits of cell delivery is essential. We used an extensive toolset comprising various standard and multiplex assays for the assessment of cell delivery pos... Read More about A detailed assessment of varying ejection rate on delivery efficiency of mesenchymal stem cells using narrow-bore needles.

Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I (2016)
Journal Article
Paduano, F., Marrelli, M., White, L. J., Shakesheff, K., & Tatullo, M. (2016). Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS ONE, 11(2), 1-18. https://doi.org/10.1371/journal.pone.0148225

Objectives
The aim of this study was to evaluate the level of odontogenic
differentiation of dental pulp stem cells (DPSCs) on hydrogel scaffolds derived from bone extracellular matrix (bECM) in comparison to those seeded on collagen I (Col-I), on... Read More about Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I.

In vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors (2015)
Journal Article
Gothard, D., Smith, E. L., Kanczler, J. M., Black, C. R., Wells, J. A., Roberts, C. A., White, L., Qutachi, O., Peto, H., Rashidi, H., Rojo, L., Stevens, M. M., El Haj, A. J., Rose, F., Shakesheff, K., & Oreffo, R. O. (2015). In vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors. PLoS ONE, 10(12), Article e0145080. https://doi.org/10.1371/journal.pone.0145080

A Thermoresponsive and Magnetic Colloid for 3D Cell Expansion and Reconfiguration (2014)
Journal Article
Saunders, B. R., Gould, T., Saeed, A. O., Francini, N., White, L., Dixon, J. E., Gould, T. W., Rashidi, H., Al Ghanami, R. C., Hruschka, V., Redl, H., Saunders, B. R., Alexander, C., & Shakesheff, K. M. (2015). A Thermoresponsive and Magnetic Colloid for 3D Cell Expansion and Reconfiguration. Advanced Materials, 27(4), 662-668. https://doi.org/10.1002/adma.201403626

A dual thermoresponsive and magnetic colloidal gel matrix is described for enhanced stem-cell culture. The combined properties of the material allow enzyme-free passaging and expansion of mesenchymal stem cells, as well as isolation of cells postcult... Read More about A Thermoresponsive and Magnetic Colloid for 3D Cell Expansion and Reconfiguration.

Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering (2014)
Journal Article
Qodratnama, R., Pio Serino, L., Cox, H., Qutachi, O., & White, L. J. (2015). Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering. Materials Science and Engineering: C, 47, 230-236. https://doi.org/10.1016/j.msec.2014.11.003

In this study we present an approach to pre-program lysozyme release from large size (100–300 μm) poly(dl-lactic acid-co-glycolic acid) (PLGA) microparticles. This approach involved blending in-house synthesized triblock copolymers with a PLGA 85:15.... Read More about Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering.

Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model (2014)
Journal Article
Smith, E., Rose, F., Kanczler, J., Shakesheff, K., Gothard, D., White, L., Roberts, C., Wells, J., Qutachi, O., Sawkins, M., Peto, H., Rashidi, H., Rojocd, L., Stevens, M., El Haj, A., & Oreffoa, R. (2014). Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model. Acta Biomaterialia, 10(10), 4186-4196. https://doi.org/10.1016/j.actbio.2014.06.011

Current clinical treatments for skeletal conditions resulting in large-scale bone loss include autograft or allograft, both of which have limited effectiveness. In seeking to address bone regeneration, several tissue engineering strategies have come... Read More about Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model.

A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model (2014)
Journal Article
McLaren, J. S., White, L., Cox, H., Ashraf, W., Rahman, C., Blunn, G., Goodship, A., Quirk, R., Shakesheff, K. M., Bayston, R., & Scammell, B. E. (2014). A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model. eCells and Materials Journal, 27, 332-349. https://doi.org/10.22203/eCM.v027a24

Open fractures are at risk of serious infection and, if infected, require several surgical interventions and courses of systemic antibiotics. We investigated a new injectable formulation that simultaneously hardens in vivo to form a porous scaffold f... Read More about A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model.

A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis and encourage new bone growth (2014)
Journal Article
McLaren, J. S., Bayston, R., White, L. J., Cox, H. C., Ashraf, W., Rahman, C. V., Blunn, G., Goodship, A. E., Quirk, R. A., Shakesheff, K. M., & Scammell, B. E. (2014). A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis and encourage new bone growth. eCells and Materials Journal, 27, 332-349. https://doi.org/10.22203/eCM.v027a24

Open fractures are at risk of serious infection and, if infected, require several surgical interventions and courses of systemic antibiotics. We investigated a new injectable formulation that simultaneously hardens in vivo to form a porous scaffold f... Read More about A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis and encourage new bone growth.