Skip to main content

Research Repository

Advanced Search

Professor FELICITY ROSE's Outputs (62)

Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation (2020)
Preprint / Working Paper
He, Y., Begines, B., Luckett, J., Dubern, J.-F., Hook, A., Prina, E., Rose, F. R., Tuck, C., Hague, R., Irvine, D., Williams, P., Alexander, M. R., & Wildman, R. D. Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation

We demonstrate the formulation of advanced functional 3D printing inks that prevent the formation of bacterial biofilms in vivo. Starting from polymer libraries, we show that a biofilm resistant object can be 3D printed with the potential for shape a... Read More about Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation.

Bioinspired Precision Engineering of Three-Dimensional Epithelial Stem Cell Microniches (2020)
Journal Article
Prina, E., Amer, M. H., Sidney, L., Tromayer, M., Moore, J., Liska, R., Bertolin, M., Ferrari, S., Hopkinson, A., Dua, H., Yang, J., Wildman, R., & Rose, F. R. (2020). Bioinspired Precision Engineering of Three-Dimensional Epithelial Stem Cell Microniches. Advanced Biosystems, 4(6), Article 2000016. https://doi.org/10.1002/adbi.202000016

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Maintenance of the epithelium relies on stem cells residing within specialized microenvironments, known as epithelial crypts. Two-photon polymerization (2PP) is a valuable... Read More about Bioinspired Precision Engineering of Three-Dimensional Epithelial Stem Cell Microniches.

The electrospinning of a thermo-responsive polymer with peptide conjugates for phenotype support and extracellular matrix production of therapeutically relevant mammalian cells (2020)
Journal Article
Ruiter, F. A., Sidney, L. E., Kiick, K. L., Segal, J. I., Alexander, C., & Rose, F. R. A. J. (2020). The electrospinning of a thermo-responsive polymer with peptide conjugates for phenotype support and extracellular matrix production of therapeutically relevant mammalian cells. Biomaterials Science, 8(9), 2611-2626. https://doi.org/10.1039/c9bm01965k

Current cell expansion methods for tissue engineering and regenerative medicine applications rely on the use of enzymatic digestion passaging and 2D platforms. However, this enzymatic treatment significantly reduces cell quality, due to the destructi... Read More about The electrospinning of a thermo-responsive polymer with peptide conjugates for phenotype support and extracellular matrix production of therapeutically relevant mammalian cells.

A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants (2020)
Journal Article
He, Y., Foralosso, R., Ferraz Trindade, G., Ilchev, A., Cantu, L. R., Clark, E., Khaled, S., Hague, R. J. M., Tuck, C. J., Rose, F. R. A. J., Mantovani, G., Irvine, D., Roberts, C. J., & Wildman, R. D. (2020). A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants. Advanced Therapeutics, 3(6), Article 1900187. https://doi.org/10.1002/adtp.201900187

We propose a strategy for creating tuneable 3D printed drug delivery devices. 3D printing offers the opportunity for improved compliance and patient treatment outcomes through personalisation, but bottlenecks include finding formulations that provide... Read More about A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants.

Development of bioactive electrospun scaffolds suitable to support skin fibroblasts and release Lucilia sericata maggot excretion/secretion (2019)
Preprint / Working Paper
Giacaman, A. G., Styliari, I. D., Taresco, V., Pritchard, D., Alexander, C., & Rose, F. R. Development of bioactive electrospun scaffolds suitable to support skin fibroblasts and release Lucilia sericata maggot excretion/secretion

Larval therapy has been reported to exert beneficial actions upon chronic wound healing by promoting granulation tissue formation, antimicrobial activity and degrading necrotic tissue. However, the use of live maggots is problematic for patient accep... Read More about Development of bioactive electrospun scaffolds suitable to support skin fibroblasts and release Lucilia sericata maggot excretion/secretion.

Stem cells from the dental apical papilla in extracellular matrix hydrogels mitigate inflammation of microglial cells (2019)
Journal Article
Tatic, N., Rose, F. R., des Rieux, A., & White, L. J. (2019). Stem cells from the dental apical papilla in extracellular matrix hydrogels mitigate inflammation of microglial cells. Scientific Reports, 9, Article 14015. https://doi.org/10.1038/s41598-019-50367-x

After spinal cord injury (SCI) chronic inflammation hampers regeneration. Influencing the local microenvironment after SCI may provide a strategy to modulate inflammation and the immune response. The objectives of this work were to determine whether... Read More about Stem cells from the dental apical papilla in extracellular matrix hydrogels mitigate inflammation of microglial cells.

Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function (2019)
Journal Article
Alvarez-Paino, M., Amer, M. H., Nasir, A., Cuzzucoli Crucitti, V., Thorpe, J., Burroughs, L., Needham, D., Denning, C., Alexander, M. R., Alexander, C., & Rose, F. (2019). Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function. ACS Applied Materials and Interfaces, 11(38), 34560-34574. https://doi.org/10.1021/acsami.9b04769

Surface-functionalized microparticles are relevant to fields spanning engineering and biomedicine, with uses ranging from cell culture to advanced cell delivery. Varying topographies of biomaterial surfaces are also being investigated as mediators of... Read More about Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function.

Nanofibrous scaffolds support a 3D in vitro permeability model of the human intestinal epitheleum (2019)
Journal Article
Patient, J. D., Hajiali, H., Harris, K., Abrahamsson, B., Tannergreen, C., White, L. J., Ghaemmaghami, A. M., Williams, P. M., Roberts, C. J., & Rose, F. R. (2019). Nanofibrous scaffolds support a 3D in vitro permeability model of the human intestinal epitheleum. Frontiers in Pharmacology, 10, Article 456. https://doi.org/10.3389/fphar.2019.00456

Advances in drug research not only depend on high throughput screening to evaluate large numbers of lead compounds but also on the development of in vitro models which can simulate human tissues in terms of drug permeability and functions. Potential... Read More about Nanofibrous scaffolds support a 3D in vitro permeability model of the human intestinal epitheleum.

Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples (2019)
Journal Article
Dooley, M., Prasopthum, A., Liao, Z., Sinjab, F., Mclaren, J., Rose, F. R. A. J., Yang, J., & Notingher, I. (2019). Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples. Biomedical Optics Express, 10(4), 1678-1690. https://doi.org/10.1364/BOE.10.001678

Using phantom samples, we investigated the feasibility of spatially-offset Raman spectroscopy (SORS) as a tool for monitoring non-invasively the mineralization of bone tissue engineering scaffold in-vivo. The phantom samples consisted of 3D-printed s... Read More about Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples.

A thermoresponsive three-dimensional fibrous cell culture platform for enzyme-free expansion of mammalian cells (2019)
Journal Article
Aladdad, A. M., Amer, M. H., Sidney, L., Hopkinson, A., White, L. J., Alexander, C., & Rose, F. R. (2019). A thermoresponsive three-dimensional fibrous cell culture platform for enzyme-free expansion of mammalian cells. Acta Biomaterialia, 95, 427-438. https://doi.org/10.1016/j.actbio.2019.01.037

A three-dimensional thermoresponsive fibrous scaffold system for the subsequent extended culture and enzyme-free passaging of a range of mammalian cell types is presented. Poly(PEGMA188) was incorporated with poly(ethylene terephthalate) (PET) via bl... Read More about A thermoresponsive three-dimensional fibrous cell culture platform for enzyme-free expansion of mammalian cells.

In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft (2018)
Journal Article
Rose, J., Sidney, L., Patient, J., White, L., Dua, H., El Haj, A., Hopkinson, A., & Rose, F. (2018). In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft. Journal of Biomedical Materials Research Part A, 107(4), 828-838. https://doi.org/10.1002/jbm.a.36598

The advent of innovative surgical procedures utilizing partial thickness corneal grafts has created a need for the development of synthetic implants to recreate corneal stromal tissue. This work evaluates electrospun gelatin and polycaprolactone (PCL... Read More about In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft.

Geometry alone influences stem cell differentiation in a precision 3D printed stem cell niche (2018)
Preprint / Working Paper
Prina, E., Sidney, L., Tromayer, M., Moore, J., Liska, R., Bertolin, M., Ferrari, S., Hopkinson, A., Dua, H., Yang, J., Wildman, R., & Rose, F. R. Geometry alone influences stem cell differentiation in a precision 3D printed stem cell niche

Stem cells within epithelial tissues reside in anatomical structures known as crypts that are known to contribute to the mechanical and chemical milieu important for function. To date, epithelial stem cell therapies have largely ignored the niche and... Read More about Geometry alone influences stem cell differentiation in a precision 3D printed stem cell niche.

Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells (2018)
Journal Article
Donaldson, A. R., Edi Tanase, C., Awuah, D., Vasanthi Bathri Narayanan, P., Hall, L., Nikkhah, M., Khademhosseini, A., Rose, F., Alexander, C., & Ghaemmaghami, A. M. (2018). Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells. Frontiers in Bioengineering and Biotechnology, 6, Article 116. https://doi.org/10.3389/fbioe.2018.00116

Hydrogels are an attractive class of biomaterials in tissue engineering due to their inherently compatible properties for cell culture. Gelatin methacryloyl (GelMA) has shown significant promise in the fields of tissue engineering and drug delivery,... Read More about Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells.

Electrospun gelatin-based scaffolds as a novel 3D platform to study the function of contractile smooth muscle cells in vitro (2018)
Journal Article
Bridge, J. C., Amer, M. H., Morris, G. E., Martin, N., Player, D. J., Knox, A. J., Aylott, J. W., Lewis, M. P., & Rose, F. R. (2018). Electrospun gelatin-based scaffolds as a novel 3D platform to study the function of contractile smooth muscle cells in vitro. Biomedical Physics and Engineering Express, 4(4), Article 045039. https://doi.org/10.1088/2057-1976/aace8f

Contractile dysfunction of smooth muscle (SM) is a feature of chronic cardiovascular, respiratory and gastro-intestinal diseases. Owing to the low availability of human ex vivo tissue for the assessment of SM contractile function, the aim of this stu... Read More about Electrospun gelatin-based scaffolds as a novel 3D platform to study the function of contractile smooth muscle cells in vitro.

Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations (2018)
Journal Article
Qutachi, O., Wright, E. J., Bray, G., Hamid, O. A., Rose, F. R., Shakesheff, K., & Delcassian, D. (2018). Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations. International Journal of Pharmaceutics, 546(1-2), 272-278. https://doi.org/10.1016/j.ijpharm.2018.05.025

Polymer microparticles are widely used as acellular drug delivery platforms in regenerative medicine, and have emerging potential as cellular scaffolds for therapeutic cell delivery. In the clinic, PLGA microparticles are typically administered intra... Read More about Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations.

In vitro, in silico and in vivo study challenges the impact of bronchial thermoplasty on acute airway smooth muscle mass loss (2018)
Journal Article
Chernyavsky, I. L., Russell, R. J., Saunders, R. M., Morris, G. E., Berair, R., Singapuri, A., Chachi, L., Mansur, A. H., Howarth, P. H., Dennison, P., Chaudhuri, R., Bicknell, S., Rose, F. R. A., Siddiqui, S., Brook, B. S., & Brightling, C. E. (2018). In vitro, in silico and in vivo study challenges the impact of bronchial thermoplasty on acute airway smooth muscle mass loss. European Respiratory Journal, 51(5), Article 1701680. https://doi.org/10.1183/13993003.01680-2017

Bronchial thermoplasty is a treatment for asthma. Whether during thermoplasty the airway wall fraction exposed to temperatures necessary to affect cells is sufficient to explain its histopathological impact is unclear.
Airway smooth muscle and bronc... Read More about In vitro, in silico and in vivo study challenges the impact of bronchial thermoplasty on acute airway smooth muscle mass loss.

A biomaterials approach to influence stem cell fate in injectable cell-based therapies (2018)
Journal Article
Amer, M. H., Rose, F. R., Shakesheff, K. M., & White, L. J. (2018). A biomaterials approach to influence stem cell fate in injectable cell-based therapies. Stem Cell Research and Therapy, 9(39), https://doi.org/10.1186/s13287-018-0789-1

Background: Numerous stem cell therapies use injection-based administration to deliver high density cell preparations. However, cell retention rates as low as 1% have been observed within days of transplantation. This study investigated the effects o... Read More about A biomaterials approach to influence stem cell fate in injectable cell-based therapies.

Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures (2017)
Journal Article
Kumar, D., Workman, V., O'Brien, M. C., McLaren, J. S., White, L. J., Ragunath, K., Saiani, A., Gough, J., & Rose, F. R. (2017). Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures. Advanced Functional Materials, 27(38), Article 1702424. https://doi.org/10.1002/adfm.201702424

Endoscopic treatment of Barrett’s oesophagus often leads to further damage of healthy tissue causing fibrotic tissue formation termed as strictures. This study shows that synthetic, self-assembling peptide hydrogels (PeptiGelDesign) support the activ... Read More about Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures.

Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges (2017)
Journal Article
Amer, M. H., Rose, F. R., Shakesheff, K. M., Modo, M., & White, L. J. (in press). Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. npj Regenerative Medicine, 2, Article 23. https://doi.org/10.1038/s41536-017-0028-x

Significant progress has been made during the past decade towards the clinical adoption of cell- based therapeutics. However, existing cell delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells... Read More about Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges.

A design of experiments (DoE) approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies (2017)
Journal Article
Ruiter, F. A. A., Alexander, C., Rose, F. R., & Segal, J. (2017). A design of experiments (DoE) approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies. Biomedical Materials, 12(5), Article 055009. https://doi.org/10.1088/1748-605X/aa7b54

Electrospun fibrous materials have increasing applications in regenerative medicine due to the similarity of fibre constructs to the morphology of certain extracellular matrices. Although experimentally the electrospinning method is relatively simple... Read More about A design of experiments (DoE) approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies.