Natalija Tatic
Stem cells from the dental apical papilla in extracellular matrix hydrogels mitigate inflammation of microglial cells
Tatic, Natalija; Rose, Felicity R.A.J.; des Rieux, Anne; White, Lisa J.
Authors
Professor FELICITY ROSE FELICITY.ROSE@NOTTINGHAM.AC.UK
PROFESSOR OF BIOMATERIALS AND TISSUE ENGINEERING
Anne des Rieux
Dr LISA WHITE LISA.WHITE@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
Abstract
After spinal cord injury (SCI) chronic inflammation hampers regeneration. Influencing the local microenvironment after SCI may provide a strategy to modulate inflammation and the immune response. The objectives of this work were to determine whether bone or spinal cord derived ECM hydrogels can deliver human mesenchymal stem cells from the apical papilla (SCAP) to reduce local inflammation and provide a regenerative microenvironment. Bone hydrogels (8 and 10 mg/ml, B8 and B10) and spinal cord hydrogels (8 mg/ml, S8) supplemented with fibrin possessed a gelation rate and a storage modulus compatible with spinal cord implantation. S8 and B8 impact on the expression of anti and pro-inflammatory cytokines (Arg1, Nos2, Tnf) in LPS treated microglial cells were assessed using solubilised and solid hydrogel forms. S8 significantly reduced the Nos2/Arg1 ratio and solubilised B8 significantly reduced Tnf and increased Arg1 whereas solid S8 and B8 did not impact inflammation in microglial cells. SCAP incorporation within ECM hydrogels did not impact upon SCAP immunoregulatory properties, with significant downregulation of Nos2/Arg1 ratio observed for all SCAP embedded hydrogels. Tnf expression was reduced with SCAP embedded in B8, reflecting the gene expression observed with the innate hydrogel. Thus, ECM hydrogels are suitable vehicles to deliver SCAP due to their physical properties, preservation of SCAP viability and immunomodulatory capacity.
Citation
Tatic, N., Rose, F. R., des Rieux, A., & White, L. J. (2019). Stem cells from the dental apical papilla in extracellular matrix hydrogels mitigate inflammation of microglial cells. Scientific Reports, 9, Article 14015. https://doi.org/10.1038/s41598-019-50367-x
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 6, 2019 |
Online Publication Date | Sep 30, 2019 |
Publication Date | Sep 30, 2019 |
Deposit Date | Sep 12, 2019 |
Publicly Available Date | Sep 30, 2019 |
Journal | Scientific Reports |
Electronic ISSN | 2045-2322 |
Publisher | Nature Publishing Group |
Peer Reviewed | Peer Reviewed |
Volume | 9 |
Article Number | 14015 |
DOI | https://doi.org/10.1038/s41598-019-50367-x |
Public URL | https://nottingham-repository.worktribe.com/output/2590755 |
Publisher URL | https://www.nature.com/articles/s41598-019-50367-x |
Contract Date | Sep 30, 2019 |
Files
s41598-019-50367-x
(2 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs
(2022)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search