Research Repository

See what's under the surface


High-temperature molecular beam epitaxy of hexagonal boron nitride with high active nitrogen fluxes (2018)
Journal Article
Cheng, T. S., Summerfield, A., Mellor, C. J., Khlobystov, A. N., Eaves, L., Foxon, C. T., …Novikov, S. V. (2018). High-temperature molecular beam epitaxy of hexagonal boron nitride with high active nitrogen fluxes. Materials, 11(7), doi:10.3390/ma11071119. ISSN 1996-1944

Hexagonal boron nitride (hBN) has attracted much attention as a key component in van der Waals heterostructures and as a wide band gap material for deep-ultraviolet devices. We have recently demonstrated plasma-assisted molecular beam epitaxy (PA-MBE... Read More

Moiré-modulated conductance of hexagonal boron nitride tunnel barriers (2018)
Journal Article
Summerfield, A., Kozikov, A., Cheng, T. S., Davies, A., Cho, Y., Khlobystov, A. N., …Beton, P. H. (in press). Moiré-modulated conductance of hexagonal boron nitride tunnel barriers. Nano Letters, doi:10.1021/acs.nanolett.8b01223. ISSN 1530-6984

Monolayer hexagonal boron nitride (hBN) tunnel barriers investigated using conductive atomic force microscopy reveal moiré patterns in the spatial maps of their tunnel conductance consistent with the formation of a moiré superlattice between the hB... Read More

High-temperature molecular beam epitaxy of hexagonal boron nitride layers (2018)
Journal Article
Cheng, T. S., Summerfield, A., Mellor, C. J., Davies, A., Khlobystov, A. N., Eaves, L., …Novikov, S. V. (in press). High-temperature molecular beam epitaxy of hexagonal boron nitride layers. Journal of Vacuum Science and Technology B, 36(2), doi:10.1116/1.5011280. ISSN 2166-2746

The growth and properties of hexagonal boron nitride (hBN) have recently attracted much attention due to applications in graphene-based monolayer thick 2D-structures and at the same time as a wide band gap material for deep-ultraviolet device (DUV) a... Read More

Lattice-matched epitaxial graphene grown on boron nitride (2017)
Journal Article
Davies, A., Albar, J., Summerfield, A., Thomas, J. C., Cheng, T. S., Korolkov, V. V., …Beton, P. H. (2018). Lattice-matched epitaxial graphene grown on boron nitride. Nano Letters, 18(1), doi:10.1021/acs.nanolett.7b04453. ISSN 1530-6984

Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band-gap but requires the formation of highly strained material and has not hitherto been realised. We demonstrate that aligned, lattice-matched graphene ca... Read More

An atomic carbon source for high temperature molecular beam epitaxy of graphene (2017)
Journal Article
Albar, J., Summerfield, A., Cheng, T. S., Davies, A., Smith, E., Khlobystov, A. N., …Novikov, S. V. (in press). An atomic carbon source for high temperature molecular beam epitaxy of graphene. Scientific Reports, 7(1), doi:10.1038/s41598-017-07021-1. ISSN 2045-2322

We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, wh... Read More

Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy (2016)
Journal Article
Cho, Y., Summerfield, A., Davies, A., Cheng, T. S., Smith, E. F., Mellor, C. J., …Novikov, S. V. (in press). Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy. Scientific Reports, 6, doi:10.1038/srep34474. ISSN 2045-2322

We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting... Read More

Strain-engineered graphene grown on hexagonal boron nitride by molecular beam epitaxy (2016)
Journal Article
Summerfield, A., Davies, A., Cheng, T. S., Korolkov, V. V., Cho, Y., Mellor, C. J., …Beton, P. H. (2016). Strain-engineered graphene grown on hexagonal boron nitride by molecular beam epitaxy. Scientific Reports, 6, doi:10.1038/srep22440. ISSN 2045-2322

Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are hig... Read More