Skip to main content

Research Repository

Advanced Search

All Outputs (33)

PLGA-PEG-PLGA hydrogels induce cytotoxicity in conventional in vitro assays (2024)
Journal Article
Stewart, C. L., Hook, A. L., Zelzer, M., Marlow, M., & Piccinini, A. M. (2024). PLGA-PEG-PLGA hydrogels induce cytotoxicity in conventional in vitro assays. Cell Biochemistry and Function, 42(5), Article e4097. https://doi.org/10.1002/cbf.4097

We identified that PLGA-PEG-PLGA hydrogels, which have been used in human clinical trials and possess a demonstrable safety profile, induced significant cytotoxicity in conventional in vitro assays. This major contradiction may lead to inconsistent a... Read More about PLGA-PEG-PLGA hydrogels induce cytotoxicity in conventional in vitro assays.

Cellular and microenvironmental cues that promote macrophage fusion and foreign body response (2024)
Journal Article
Stewart, C. L., Marlow, M., Zelzer, M., Hook, A. L., & Piccinini, A. M. (in press). Cellular and microenvironmental cues that promote macrophage fusion and foreign body response. Frontiers in Immunology, 15, https://doi.org/10.3389/fimmu.2024.1411872

During the foreign body response (FBR), macrophages fuse to form foreign body giant cells (FBGCs). Modulation of FBGC formation can prevent biomaterial degradation and loss of therapeutic efficacy. However, the microenvironmental cues that dictate FB... Read More about Cellular and microenvironmental cues that promote macrophage fusion and foreign body response.

Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage (2024)
Journal Article
Du, Q., Dickinson, A., Nakuleswaran, P., Maghami, S., Alagoda, S., Hook, A. L., & Ghaemmaghami, A. M. (2024). Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. International Journal of Molecular Sciences, 25(13), Article 7278. https://doi.org/10.3390/ijms25137278

Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various st... Read More about Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage.

A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection (2023)
Journal Article
Crawford, L. A., Cuzzucoli Crucitti, V., Stimpson, A., Morgan, C., Blake, J., Wildman, R. D., …Avery, S. V. (2023). A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection. Green Chemistry, 25(21), 8558-8569. https://doi.org/10.1039/d3gc01911j

Fungicidal compounds are actives widely used for crop protection from fungal infection, but they can also kill beneficial organisms, enter the food chain and promote resistant pathogen strains from overuse. Here we report the first field crop trial o... Read More about A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection.

Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS (2023)
Journal Article
Khateb, H., Hook, A. L., Kern, S., Watts, J. A., Singh, S., Jackson, D., …Alexander, M. R. (2023). Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS. Biointerphases, 18(3), Article 031007. https://doi.org/10.1116/6.0002604

Secondary ion mass spectrometry (SIMS) offers advantages over both liquid extraction mass spectrometry and matrix assisted laser desorption mass spectrometry in that it provides the direct in situ analysis of molecules and has the potential to preser... Read More about Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS.

Virtual High‐Throughput Screening of Vapor‐Deposited Amphiphilic Polymers for Inhibiting Biofilm Formation (2023)
Journal Article
Feng, Z., Cheng, Y., Khlyustova, A., Wani, A., Franklin, T., Varner, J. D., …Yang, R. (2023). Virtual High‐Throughput Screening of Vapor‐Deposited Amphiphilic Polymers for Inhibiting Biofilm Formation. Advanced Materials Technologies, 8(13), Article 2201533. https://doi.org/10.1002/admt.202201533

Amphiphilic copolymers (AP) represent a class of novel antibiofouling materials whose chemistry and composition can be tuned to optimize their performance. However, the enormous chemistry-composition design space associated with AP makes their perfor... Read More about Virtual High‐Throughput Screening of Vapor‐Deposited Amphiphilic Polymers for Inhibiting Biofilm Formation.

Linear Binary Classifier to Predict Bacterial Biofilm Formation on Polyacrylates (2023)
Journal Article
Contreas, L., Hook, A. L., Winkler, D. A., Figueredo, G., Williams, P., Laughton, C. A., …Williams, P. M. (2023). Linear Binary Classifier to Predict Bacterial Biofilm Formation on Polyacrylates. ACS Applied Materials and Interfaces, 15(11), 14155-14163. https://doi.org/10.1021/acsami.2c23182

Bacterial infections are increasingly problematic due to the rise of antimicrobial resistance. Consequently, the rational design of materials naturally resistant to biofilm formation is an important strategy for preventing medical device-associated i... Read More about Linear Binary Classifier to Predict Bacterial Biofilm Formation on Polyacrylates.

Exploring the Relationship between Polymer Surface Chemistry and Bacterial Attachment Using ToF-SIMS and Self-Organizing maps (2023)
Journal Article
Wong, S. Y., Hook, A. L., Gardner, W., Chang, C., Mei, Y., Davies, M. C., …Pigram, P. J. (2023). Exploring the Relationship between Polymer Surface Chemistry and Bacterial Attachment Using ToF-SIMS and Self-Organizing maps. Advanced Materials Interfaces, 10(9), Article 2202334. https://doi.org/10.1002/admi.202202334

Biofilm formation is a major cause of hospital-acquired infections. Research into biofilm-resistant materials is therefore critical to reduce the frequency of these events. Polymer microarrays offer a high-throughput approach to enable the efficient... Read More about Exploring the Relationship between Polymer Surface Chemistry and Bacterial Attachment Using ToF-SIMS and Self-Organizing maps.

Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation (2023)
Journal Article
Dubern, J. F., Hook, A. L., Carabelli, A. M., Chang, C. Y., Lewis-Lloyd, C. A., Luckett, J. C., …Williams, P. (2023). Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation. Science Advances, 9(4), Article eadd7474. https://doi.org/10.1126/sciadv.add7474

Innovative approaches to prevent catheter-associated urinary tract infections (CAUTIs) are urgently required. Here, we describe the discovery of an acrylate copolymer capable of resisting single- and multispecies bacterial biofilm formation, swarming... Read More about Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation.

Evaluation of the relative potential for contact and doffing transmission of SARS-CoV-2 by a range of personal protective equipment materials (2022)
Journal Article
Xue, X., Coleman, C. M., Duncan, J. D., Hook, A. L., Ball, J. K., Alexander, C., & Alexander, M. R. (2022). Evaluation of the relative potential for contact and doffing transmission of SARS-CoV-2 by a range of personal protective equipment materials. Scientific Reports, 12(1), Article 16654. https://doi.org/10.1038/s41598-022-20952-8

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—the causative agent of coronavirus disease 2019 (COVID-19)—has caused a global public health emergency. Personal protective equipment (PPE) is the primary defence against viral exposure in... Read More about Evaluation of the relative potential for contact and doffing transmission of SARS-CoV-2 by a range of personal protective equipment materials.

Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices (2021)
Journal Article
He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., …Wildman, R. D. (2022). Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials, 281, Article 121350. https://doi.org/10.1016/j.biomaterials.2021.121350

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured throu... Read More about Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices.

High sensitivity analysis of nanogram quantities of glycosaminoglycans using ToF-SIMS (2021)
Journal Article
Hook, A. L., Hogwood, J., Gray, E., Mulloy, B., & Merry, C. L. (2021). High sensitivity analysis of nanogram quantities of glycosaminoglycans using ToF-SIMS. Communications Chemistry, 4, Article 67. https://doi.org/10.1038/s42004-021-00506-1

Glycosaminoglycans (GAGs) are important biopolymers that differ in the sequence of saccharide units and in post polymerization alterations at various positions, making these complex molecules challenging to analyse. Here we describe an approach that... Read More about High sensitivity analysis of nanogram quantities of glycosaminoglycans using ToF-SIMS.

Discovery of hemocompatible bacterial biofilm-resistant copolymers (2020)
Journal Article
Singh, T., Hook, A. L., Luckett, J., Maitz, M. F., Sperling, C., Werner, C., …Alexander, M. R. (2020). Discovery of hemocompatible bacterial biofilm-resistant copolymers. Biomaterials, 260, Article 120312. https://doi.org/10.1016/j.biomaterials.2020.120312

© 2020 The Authors Blood-contacting medical devices play an important role within healthcare and are required to be biocompatible, hemocompatible and resistant to microbial colonization. Here we describe a high throughput screen for copolymers with t... Read More about Discovery of hemocompatible bacterial biofilm-resistant copolymers.

Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo (2020)
Journal Article
Rostam, H. M., Fisher, L. E., Hook, A. L., Burroughs, L., Luckett, J. C., Figueredo, G. P., …Ghaemmaghami, A. M. (2020). Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo. Matter, 2(6), 1564-1581. https://doi.org/10.1016/j.matt.2020.03.018

© 2020 The Author(s) Implantation of medical devices can result in inflammation. A large library of polymers is screened, and a selection found to promote macrophage differentiation towards pro- or anti-inflammatory phenotypes. The bioinstructive pro... Read More about Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo.

ToF-SIMS and Machine Learning for Single-Pixel Molecular Discrimination of an Acrylate Polymer Microarray (2020)
Journal Article
Gardner, W., Hook, A. L., Alexander, M. R., Ballabio, D., Cutts, S. M., Muir, B. W., & Pigram, P. J. (2020). ToF-SIMS and Machine Learning for Single-Pixel Molecular Discrimination of an Acrylate Polymer Microarray. Analytical Chemistry, 92(9), 6587-6597. https://doi.org/10.1021/acs.analchem.0c00349

© 2020 American Chemical Society. Combinatorial approaches to materials discovery offer promising potential for the rapid development of novel polymer systems. Polymer microarrays enable the high-throughput comparison of material physical and chemica... Read More about ToF-SIMS and Machine Learning for Single-Pixel Molecular Discrimination of an Acrylate Polymer Microarray.

Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation (2019)
Journal Article
Dundas, A. A., Sanni, O., Dubern, J.-F., Dimitrakis, G., Hook, A. L., Irvine, D. J., …Alexander, M. R. (2019). Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation. Advanced Materials, 31(49), Article 1903513. https://doi.org/10.1002/adma.201903513

ynthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical‐device‐centered infections. The incidence rate for catheter‐associated urinary tract infections is between 3% and 7% for each day o... Read More about Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation.

Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators (2019)
Journal Article
Hook, A. L., Flewellen, J. L., Dubern, J.-F., Carabelli, A., Zald, I. M., Berry, R. M., …Alexander, M. R. (2019). Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators. mSystems, 4(5), Article e00390-19. https://doi.org/10.1128/mSystems.00390-19

Bacteria sense chemicals, surfaces, and other cells and move toward some and away from others. Studying how single bacterial cells in a population move requires sophisticated tracking and imaging techniques. We have established quantitative methodolo... Read More about Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators.

Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators (2019)
Journal Article
Dundas, A. A., Hook, A. L., Alexander, M. R., Kingman, S. W., Dimitrakis, G., & Irvine, D. J. (2019). Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators. Reaction Chemistry and Engineering, 4(8), 1472-1476. https://doi.org/10.1039/c9re00173e

© 2019 The Royal Society of Chemistry. A novel single-well prototype high throughput microwave reactor geometry has been produced and shown to be capable of synthesizing an array of non-commercially available methacrylate monomers. The reactor, which... Read More about Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators.

Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices (2018)
Journal Article
Dundas, A. A., Mikulskis, P., Hook, A., Dundas, A., Irvine, D., Sanni, O., …Winkler, D. A. (2018). Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices. ACS Applied Materials and Interfaces, 10(1), 139-149. https://doi.org/10.1021/acsami.7b14197

© 2017 American Chemical Society. Bacterial infections in healthcare settings are a frequent accompaniment to both routine procedures such as catheterization and surgical site interventions. Their impact is becoming even more marked as the numbers of... Read More about Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices.

Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating (2017)
Journal Article
Tyler, B. J., Hook, A. L., Pelster, A., Williams, P., Alexander, M. R., & Arlinghaus, H. F. (2017). Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating. Biointerphases, 12(2), Article 02C412. https://doi.org/10.1116/1.4984011

Catheter associated urinary tract infections (CA-UTIs) are the most common health related infections world wide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infection... Read More about Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating.