Skip to main content

Research Repository

Advanced Search

All Outputs (8)

A lithium-air battery and gas handling system demonstrator (2023)
Journal Article
Jordan, J. W., Vailaya, G., Holc, C., Jenkins, M., McNulty, R. C., Puscalau, C., …Johnson, L. R. (2024). A lithium-air battery and gas handling system demonstrator. Faraday Discussions, 248, 381-391. https://doi.org/10.1039/d3fd00137g

The lithium-air (Li-air) battery offers one of the highest practical specific energy densities of any battery system at >400 W h kgsystem−1. The practical cell is expected to operate in air, which is flowed into the positive porous electrode where it... Read More about A lithium-air battery and gas handling system demonstrator.

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., …Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.

Redox-active hierarchical assemblies of hybrid polyoxometalate nanostructures at carbon surfaces (2022)
Journal Article
Amin, S. S., Cameron, J. M., Cousins, R. B., Wrigley, J., Liirò-Peluso, L., Sans, V., …Newton, G. N. (2022). Redox-active hierarchical assemblies of hybrid polyoxometalate nanostructures at carbon surfaces. Inorganic Chemistry Frontiers, 9(8), 1777-1784. https://doi.org/10.1039/d2qi00174h

The self-assembly of hierarchical nanostructures on surfaces is a promising strategy for the development of a wide range of new technologies, such as energy-storage devices and sensors. In this work we show that amphiphilic, organofunctionalized hybr... Read More about Redox-active hierarchical assemblies of hybrid polyoxometalate nanostructures at carbon surfaces.

Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations (2022)
Journal Article
Alvarez, E., Romero-Fernandez, M., Iglesias, D., Martinez-Cuenca, R., Okafor, O., Delorme, A., …Sans, V. (2022). Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations. ACS Sustainable Chemistry and Engineering, 10(7), 2388-2396. https://doi.org/10.1021/acssuschemeng.1c06799

Electrochemical continuous-flow reactors offer a great opportunity for enhanced and sustainable chemical syntheses. Here, we present a novel application of electrochemical continuous-flow oscillatory baffled reactors (ECOBRs) that combines advanced m... Read More about Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations.

Gel-Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks (2020)
Journal Article
Sen, S., Goodwin, S. E., Barbará, P. V., Rance, G. A., Wales, D., Cameron, J. M., …Walsh, D. A. (2021). Gel-Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks. ACS Applied Polymer Materials, 3(1), 200-208. https://doi.org/10.1021/acsapm.0c01042

The use of electrically charged, polymerized ionic liquids (polyILs) offers opportunities for the development of gel-polymer electrolytes (GPEs), but the rational design of such systems is in its infancy. In this work, we compare the properties of po... Read More about Gel-Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks.

Redox?Active Hybrid Polyoxometalate?Stabilised Gold Nanoparticles (2020)
Journal Article
Martin, C., Kastner, K., Cameron, J. M., Hampson, E., Alves Fernandes, J., Gibson, E. K., …Newton, G. N. (2020). Redox‐Active Hybrid Polyoxometalate‐Stabilised Gold Nanoparticles. Angewandte Chemie International Edition, 59(34), 14331-14335. https://doi.org/10.1002/anie.202005629

We report the design and preparation of multifunctional hybrid nanomaterials through the stabilization of gold nanoparticles with thiol‐functionalised hybrid organic–inorganic polyoxometalates (POMs). The covalent attachment of the hybrid POM forms n... Read More about Redox?Active Hybrid Polyoxometalate?Stabilised Gold Nanoparticles.

Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature Ionic Liquids (2019)
Journal Article
Delorme, A. E., Sans, V., Licence, P., & Walsh, D. A. (2019). Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature Ionic Liquids. ACS Sustainable Chemistry and Engineering, 7(13), 11691-11699. https://doi.org/10.1021/acssuschemeng.9b01823

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) is a promising, sustainable, metal-free mediator for oxidation of alcohols. In this contribution, we describe how the selectivity of TEMPO for electrocatalytic alcohol oxidations in room-temperature ionic... Read More about Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature Ionic Liquids.

Scanning electrochemical microscopy at thermal sprayed anti-corrosion coatings: effect of thermal spraying on heterogeneous electron transfer kinetics (2011)
Journal Article
Niaz, A., Boatwright, A., Voisey, K., & Walsh, D. A. (2011). Scanning electrochemical microscopy at thermal sprayed anti-corrosion coatings: effect of thermal spraying on heterogeneous electron transfer kinetics. Journal of Electroanalytical Chemistry, 657(1-2), https://doi.org/10.1016/j.jelechem.2011.03.009

The effect of thermal spraying on the electrochemical activity of an anti-corrosion superalloy was studied quantitatively using scanning electrochemical microscopy (SECM). The superalloy used was Inconel 625 (a Ni base superalloy) and thin coatings o... Read More about Scanning electrochemical microscopy at thermal sprayed anti-corrosion coatings: effect of thermal spraying on heterogeneous electron transfer kinetics.