Skip to main content

Research Repository

Advanced Search

All Outputs (32)

Developmental roles of AUX1/LAX auxin influx carriers in plants (2019)
Journal Article
Swarup, R., & Bhosale, R. (2019). Developmental roles of AUX1/LAX auxin influx carriers in plants. Frontiers in Plant Science, 10, https://doi.org/10.3389/fpls.2019.01306

Plant hormone auxin regulates several aspects of plant growth and development. Auxin is predominantly synthesized in the shoot apex and developing leaf primordia and from there it is transported to the target tissues e.g. roots. Auxin transport is po... Read More about Developmental roles of AUX1/LAX auxin influx carriers in plants.

Endoreplication as a potential driver of cell wall modifications (2019)
Journal Article
Bhosale, R., Maere, S., & De Veylder, L. (2019). Endoreplication as a potential driver of cell wall modifications. Current Opinion in Plant Biology, 51, 58-65. https://doi.org/10.1016/j.pbi.2019.04.003

© 2019 Endoreplication represents a variant of the mitotic cell cycle during which cells replicate their DNA without mitosis and/or cytokinesis, resulting in an increase in the cells’ ploidy level. This process is especially prominent in higher plant... Read More about Endoreplication as a potential driver of cell wall modifications.

Roots branch towards water by post-translational modification of transcription factor ARF7 (2018)
Journal Article
Orosa Puente, B., Leftley, N., Von Wangenheim, D., Banda, J., Anjil, S., Hill, K., …Bennett, M. (2018). Roots branch towards water by post-translational modification of transcription factor ARF7. Science, 362(6421), 1407-1410. https://doi.org/10.1126/science.aau3956

Plants adapt to heterogeneous soil conditions by altering their root architecture. For example, roots branch when in contact with water using the hydropatterning response. We report that hydropatterning is dependent on auxin response factor ARF7. Thi... Read More about Roots branch towards water by post-translational modification of transcription factor ARF7.

A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation (2018)
Journal Article
Bhosale, R., Boudolf, V., Cuevas, F., Lu, R., Eekhout, T., Hu, Z., …De Veylder, L. (2018). A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation. Plant Cell, 30(10), 2330-2351. https://doi.org/10.1105/tpc.17.00983

© 2018 ASPB. Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a... Read More about A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation.

Erratum: Author Correction: A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (Nature communications (2018) 9 1 (1409)) (2018)
Journal Article
Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F. H., Hartmann, A., Traini, R., …Swarup, R. (2018). Erratum: Author Correction: A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (Nature communications (2018) 9 1 (1409)). Nature Communications, 9(1), 1818. https://doi.org/10.1038/s41467-018-04281-x

The original version of this Article omitted the following from the Acknowledgements: 'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)) (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)). Nature Communications, 9(1), Article 1810. https://doi.org/10.1038/s41467-018-04280-y

The original version of this Article omitted the following from the Acknowledgements:'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (2018)
Journal Article
Giehl, R. F. H., Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F., Hartmann, A., …Swarup, R. (2018). A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 9(1), 1-9. https://doi.org/10.1038/s41467-018-03851-3

Phosphate (P) is an essential macronutrient for plant growth. Roots employ adaptive mechanisms to forage for P in soil. Root hair elongation is particularly important since P is immobile. Here we report that auxin plays a critical role promoting root... Read More about A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate.

Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-03850-4

Root traits such as root angle and hair length influence resource acquisition particularly for immobile nutrients like phosphorus (P). Here, we attempted to modify root angle in rice by disrupting the OsAUX1 auxin influx transporter gene in an effort... Read More about Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate.

Root hydrotropism is controlled via a cortex-specific growth mechanism (2017)
Journal Article
Dietrich, D., Pang, L., Kobayashi, A., Fozard, J. A., Boudolf, V., Bhosale, R., …Bennett, M. J. (2017). Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants, 3(6), Article 17057. https://doi.org/10.1038/nplants.2017.57

Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear... Read More about Root hydrotropism is controlled via a cortex-specific growth mechanism.

Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis (2016)
Journal Article
Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., …Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. https://doi.org/10.1073/pnas.1604375113

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control t... Read More about Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis.

Evaluation of codA, tms2, and ABRIN-A as negative selectable markers in transgenic tobacco and rice (2014)
Journal Article
Majhi, B. B., Bhosale, R., Jawkar, S., & Veluthambi, K. (2014). Evaluation of codA, tms2, and ABRIN-A as negative selectable markers in transgenic tobacco and rice. In Vitro Cellular and Developmental Biology - Plant, 50(5), 541-551. https://doi.org/10.1007/s11627-014-9625-1

© 2014, The Society for In Vitro Biology. The codA and tms2 genes are used as efficient conditional negative selectable markers (NSMs) in several dicotyledonous plants. We evaluated both genes under control of the CaMV 35S promoter for their effectiv... Read More about Evaluation of codA, tms2, and ABRIN-A as negative selectable markers in transgenic tobacco and rice.

Predicting Gene Function from Uncontrolled Expression Variation among Individual Wild-Type Arabidopsis Plants (2013)
Journal Article
Bhosale, R., Jewell, J. B., Hollunder, J., Koo, A. J., Vuylsteke, M., Michoel, T., …Maere, S. (2013). Predicting Gene Function from Uncontrolled Expression Variation among Individual Wild-Type Arabidopsis Plants. Plant Cell, 25(8), 2865-2877. https://doi.org/10.1105/tpc.113.112268

Gene expression profiling studies are usually performed on pooled samples grown under tightly controlled experimental conditions to suppress variability among individuals and increase experimental reproducibility. In addition, to mask unwanted residu... Read More about Predicting Gene Function from Uncontrolled Expression Variation among Individual Wild-Type Arabidopsis Plants.