Skip to main content

Research Repository

Advanced Search

All Outputs (30)

Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation (2023)
Journal Article

Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells duri... Read More about Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation.

Elucidating osseointegration in vivo in 3D printed scaffolds eliciting different foreign body responses (2023)
Journal Article

Osseointegration between biomaterial and bone is critical for the clinical success of many orthopaedic and dental implants. However, the mechanisms of in vivo interfacial bonding formation and the role of immune cells in this process remain unclear.... Read More about Elucidating osseointegration in vivo in 3D printed scaffolds eliciting different foreign body responses.

Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations (2021)
Journal Article

3D printed bioactive glass or bioceramic particle reinforced composite scaffolds for bone tissue engineering currently suffer from low particle concentration (100% breaking strain) by adding poly(ethylene glycol) which is biocompatible and FDA approv... Read More about Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations.

3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair (2021)
Journal Article

© 2020 Elsevier B.V. Development of a biomimetic tubular scaffold capable of recreating developmental neurogenesis using pluripotent stem cells offers a novel strategy for the repair of spinal cord tissues. Recent advances in 3D printing technology h... Read More about 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.

Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells (2020)
Journal Article

Conductive polymers have been used for various biomedical applications including biosensors, tissue engineering and regenerative medicine. However, the poor processability and brittleness of these polymers hinder the fabrication of three-dimensional... Read More about Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells.

Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites (2020)
Journal Article

© 2020 Combating necrosis, by supplying nutrients and removing waste, presents the major challenge for engineering large three-dimensional (3D) tissues. Previous elegant work used 3D printing with carbohydrate glass as a cytocompatible sacrificial te... Read More about Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites.

3D printed scaffolds with controlled micro-/nano- porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells (2019)
Journal Article

The effect of topography in 3D printed polymer scaffolds on stem cell differentiation is a significantly under-explored area. Compared to 2D biomaterials on which various well-defined topographies have been incorporated and been shown to direct an ar... Read More about 3D printed scaffolds with controlled micro-/nano- porous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells.

Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples (2019)
Journal Article

Using phantom samples, we investigated the feasibility of spatially-offset Raman spectroscopy (SORS) as a tool for monitoring non-invasively the mineralization of bone tissue engineering scaffold in-vivo. The phantom samples consisted of 3D-printed s... Read More about Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples.

Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (2018)
Journal Article

Root traits such as root angle and hair length influence resource acquisition particularly for immobile nutrients like phosphorus (P). Here, we attempted to modify root angle in rice by disrupting the OsAUX1 auxin influx transporter gene in an effort... Read More about Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate.

Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds (2016)
Journal Article

We investigated the feasibility of using spatially-offset Raman spectroscopy (SORS) for non-destructive characterisation of bone tissue engineering scaffolds. The deep regions of these scaffolds, or scaffolds implanted subcutaneously in live animals,... Read More about Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds.

Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers (2016)
Journal Article

© 2016 American Chemical Society. Developing medical devices that resist bacterial attachment and subsequent biofilm formation is highly desirable. In this paper, we report the optimization of the molecular structure and thus material properties of a... Read More about Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers.