Skip to main content

Research Repository

Advanced Search

Multi-material 3D bioprinting of porous constructs for cartilage regeneration

Ruiz-Cantu, Laura; Gleadall, Andrew; Faris, Callum; Segal, Joel; Shakesheff, Kevin; Yang, Jing


Laura Ruiz-Cantu

Andrew Gleadall

Callum Faris

Profile Image

Associate Professor

Kevin Shakesheff

Profile Image

Assistant Professor


© 2020 Elsevier B.V. The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilage requires a major additional procedure that may create donor site morbidity. Major nasal reconstruction also requires sculpting autologous cartilages to form a cartilage framework, which is complex, highly skill-demanding and very time consuming. These limitations have prompted facial reconstructive surgeons to explore different techniques such as tissue engineered cartilage. This work explores the use of multi-material 3D bioprinting with chondrocyte-laden gelatin methacrylate (GelMA) and polycaprolactone (PCL) to fabricate constructs that can potentially be used for nasal reconstruction. In this study, we have investigated the effect of 3D manufacturing parameters including temperature, needle gauge, UV exposure time, and cell carrier formulation (GelMA) on the viability and functionality of chondrocytes in bioprinted constructs. Furthermore, we printed chondrocyte-laden GelMA and PCL into composite constructs to combine biological and mechanical properties. It was found that 20% w/v GelMA was the best concentration for the 3D bioprinting of the chondrocytes without comprising the scaffold's porous structure and cell functionality. In addition, the 3D bioprinted constructs showed neocartilage formation and similar mechanical properties to nasal alar cartilage after a 50-day culture period. Neocartilage formation was also observed in the composite constructs evidenced by the presence of glycosaminoglycans and collagen type II. This study shows the feasibility of manufacturing neocartilage using chondrocytes/GelMA/PCL 3D bioprinted porous constructs which could be applied as a method for fabricating implants for nose reconstruction.


Ruiz-Cantu, L., Gleadall, A., Faris, C., Segal, J., Shakesheff, K., & Yang, J. (2020). Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Materials Science and Engineering: C, 109,

Journal Article Type Article
Acceptance Date Dec 19, 2019
Online Publication Date Dec 20, 2019
Publication Date Apr 1, 2020
Deposit Date Jan 2, 2020
Publicly Available Date Dec 21, 2020
Journal Materials Science and Engineering C
Print ISSN 0928-4931
Electronic ISSN 1873-0191
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 109
Article Number 110578
Keywords Tissue engineering; Cartilage; Chondrocytes; Bioprinting; 3D printing; Surface porosity; Polycaprolactone; GelMA; Multi-material 3D printing
Public URL
Publisher URL


You might also like

Downloadable Citations