Skip to main content

Research Repository

Advanced Search

All Outputs (24)

Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation (2023)
Journal Article

Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells duri... Read More about Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation.

Elucidating osseointegration in vivo in 3D printed scaffolds eliciting different foreign body responses (2023)
Journal Article

Osseointegration between biomaterial and bone is critical for the clinical success of many orthopaedic and dental implants. However, the mechanisms of in vivo interfacial bonding formation and the role of immune cells in this process remain unclear.... Read More about Elucidating osseointegration in vivo in 3D printed scaffolds eliciting different foreign body responses.

3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair (2021)
Journal Article

© 2020 Elsevier B.V. Development of a biomimetic tubular scaffold capable of recreating developmental neurogenesis using pluripotent stem cells offers a novel strategy for the repair of spinal cord tissues. Recent advances in 3D printing technology h... Read More about 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.

Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells (2020)
Journal Article

Conductive polymers have been used for various biomedical applications including biosensors, tissue engineering and regenerative medicine. However, the poor processability and brittleness of these polymers hinder the fabrication of three-dimensional... Read More about Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells.

Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples (2019)
Journal Article

Using phantom samples, we investigated the feasibility of spatially-offset Raman spectroscopy (SORS) as a tool for monitoring non-invasively the mineralization of bone tissue engineering scaffold in-vivo. The phantom samples consisted of 3D-printed s... Read More about Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples.

Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (2018)
Journal Article

Root traits such as root angle and hair length influence resource acquisition particularly for immobile nutrients like phosphorus (P). Here, we attempted to modify root angle in rice by disrupting the OsAUX1 auxin influx transporter gene in an effort... Read More about Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate.

Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers (2016)
Journal Article

© 2016 American Chemical Society. Developing medical devices that resist bacterial attachment and subsequent biofilm formation is highly desirable. In this paper, we report the optimization of the molecular structure and thus material properties of a... Read More about Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers.

Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing (2016)
Journal Article

© 2016 IOP Publishing Ltd. 3D printing is of great interest for tissue engineering scaffolds due to the ability to form complex geometries and control internal structures, including porosity and pore size. The porous structure of scaffolds plays an i... Read More about Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.

3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles (2015)
Journal Article

We have used three dimensional (3D) extrusion printing to manufacture a multi-active solid dosage form or so called polypill. This contains five compartmentalised drugs with two independently controlled and well-defined release profiles. This polypil... Read More about 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles.