Skip to main content

Research Repository

Advanced Search

All Outputs (20)

Ligand-Directed Labeling of the Adenosine A1 Receptor in Living Cells (2024)
Journal Article
Comeo, E., Goulding, J., Lin, C.-Y., Groenen, M., Woolard, J., Kindon, N. D., Harwood, C. R., Platt, S., Briddon, S. J., Kilpatrick, L. E., Scammells, P. J., Hill, S. J., & Kellam, B. (2024). Ligand-Directed Labeling of the Adenosine A1 Receptor in Living Cells. Journal of Medicinal Chemistry, https://doi.org/10.1021/acs.jmedchem.4c00835

The study of protein function and dynamics in their native cellular environment is essential for progressing fundamental science. To overcome the requirement of genetic modification of the protein or the limitations of dissociable fluorescent ligands... Read More about Ligand-Directed Labeling of the Adenosine A1 Receptor in Living Cells.

CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans (2024)
Journal Article
White, C. W., Platt, S., Kilpatrick, L. E., Dale, N., Abhayawardana, R. S., Dekkers, S., …Hill, S. J. (2024). CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans. Science Signaling, 17(828), Article abl3758. https://doi.org/10.1126/scisignal.abl3758

CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and... Read More about CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans.

Characterizing the binding of glycoprotein VI with nanobody 35 reveals a novel monomeric structure of glycoprotein VI where the conformation of D1+D2 is independent of dimerization (2022)
Journal Article
Damaskinaki, F. N., Jooss, N. J., Martin, E. M., Clark, J. C., Thomas, M. R., Poulter, N. S., …Slater, A. (2023). Characterizing the binding of glycoprotein VI with nanobody 35 reveals a novel monomeric structure of glycoprotein VI where the conformation of D1+D2 is independent of dimerization. Journal of Thrombosis and Haemostasis, 21(2), 317-328. https://doi.org/10.1016/j.jtha.2022.11.002

Background: The platelet–signaling receptor glycoprotein VI (GPVI) is a promising antithrombotic target. We have previously raised a series of high-affinity nanobodies (Nbs) against GPVI and identified Nb2, Nb21, and Nb35 as potent GPVI inhibitors. T... Read More about Characterizing the binding of glycoprotein VI with nanobody 35 reveals a novel monomeric structure of glycoprotein VI where the conformation of D1+D2 is independent of dimerization.

Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H1 Receptor (2022)
Journal Article
Kok, Z. Y., Stoddart, L. A., Mistry, S. J., Mocking, T. A., Vischer, H. F., Leurs, R., …Kellam, B. (2022). Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H1 Receptor. Journal of Medicinal Chemistry, 65(12), 8258–8288. https://doi.org/10.1021/acs.jmedchem.2c00125

The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression, therefore high affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behaviour in vitro an... Read More about Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H1 Receptor.

Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles (2022)
Journal Article
Travanut, A., Monteiro, P. F., Smith, S., Howdle, S. M., Grabowska, A. M., Kellam, B., …Alexander, C. (2022). Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles. Journal of Materials Chemistry B, 10, 3895-3905. https://doi.org/10.1039/d2tb00045h

New materials chemistries are urgently needed to overcome the limitations of existing biomedical materials in terms of preparation, functionality and versatility, and also in regards to their compatibility with biological environments. Here, we show... Read More about Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles.

Meeting report: 27th Annual GP2A Medicinal Chemistry Conference (2019)
Journal Article
Mistry, S. N., Marchand, P., & Kellam, B. (2019). Meeting report: 27th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals, 12(4), Article 179. https://doi.org/10.3390/ph12040179

The 27th annual GP2A (Groupement des Pharmacochimistes de l′Arc Atlantique/Group of Medicinal Chemists in the Atlantic Arc) conference took place from 21 to 23 August 2019, at the East Midlands Conference Centre (University Park, Nottingham, United K... Read More about Meeting report: 27th Annual GP2A Medicinal Chemistry Conference.

Structure-Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D2 Receptor (2019)
Journal Article
Fyfe, T. J., Kellam, B., Sykes, D. A., Capuano, B., Scammells, P. J., Lane, J. R., …Mistry, S. N. (2019). Structure-Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D2 Receptor. Journal of Medicinal Chemistry, 62(21), 9488-9520. https://doi.org/10.1021/acs.jmedchem.9b00864

Haloperidol is a typical antipsychotic drug (APD) associated with an increased risk of extrapyramidal side-effects (EPS) and hyperprolactinemia relative to atypical APDs such as clozapine. Both drugs are dopamine D2 receptor (D2R) antagonists, with c... Read More about Structure-Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D2 Receptor.

Modulators of CXCR4 and CXCR7/ACKR3 Function (2019)
Journal Article
Adlere, I., Caspar, B., Arimont, M., Dekkers, S., Visser, K., Stuijt, J., …Leurs, R. (2019). Modulators of CXCR4 and CXCR7/ACKR3 Function. Molecular Pharmacology, 96(6), 737-752. https://doi.org/10.1124/mol.119.117663

Copyright © 2019 by The Author(s). The two G protein-coupled receptors (GPCRs) C-X-C chemokine receptor type 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are part of the class A chemokine GPCR family and represent important drug targets for hu... Read More about Modulators of CXCR4 and CXCR7/ACKR3 Function.

Nucleoside based self-assembling drugs for localized drug delivery (2018)
Journal Article
Skilling, K. J., Stocks, M. J., Kellam, B., Ashford, M., Bradshaw, T., Burroughs, L., & Marlow, M. (in press). Nucleoside based self-assembling drugs for localized drug delivery. ChemMedChem, https://doi.org/10.1002/cmdc.201800063

We have synthesized a range of gelators based on nucleoside analogues gemcitabine and lamivudine, characterizing representative gels from the series using rheology and TEM. Growth inhibition studies of gemcitabine derivatives confirmed the feasibilit... Read More about Nucleoside based self-assembling drugs for localized drug delivery.

A thieno[2,3-d]pyrimidine scaffold is a novel negative allosteric modulator of the dopamine D2 receptor (2018)
Journal Article
Fyfe, T. J., Zarzycka, B., Lim, H. D., Kellam, B., Mistry, S. N., Katrich, V., …Capuano, B. (2019). A thieno[2,3-d]pyrimidine scaffold is a novel negative allosteric modulator of the dopamine D2 receptor. Journal of Medicinal Chemistry, 62(1), 174–206. https://doi.org/10.1021/acs.jmedchem.7b01565

Recently, a novel negative allosteric modulator (NAM) of the D 2-like dopamine receptors 1 was identified through virtual ligand screening. This ligand comprises a thieno[2,3-d]pyrimidine scaffold that does not feature in known dopaminergic ligands.... Read More about A thieno[2,3-d]pyrimidine scaffold is a novel negative allosteric modulator of the dopamine D2 receptor.

Self-assembling benzothiazole-based gelators: a mechanistic understanding of in vitro bioactivation and gelation (2018)
Journal Article
Citossi, F., Smith, T., Lee, J. B., Segal, J., Gershkovich, P., Stocks, M. J., …Marlow, M. (in press). Self-assembling benzothiazole-based gelators: a mechanistic understanding of in vitro bioactivation and gelation. Molecular Pharmaceutics, 15(4), https://doi.org/10.1021/acs.molpharmaceut.7b01106

Low molecular weight gelators (LMWGs) of chemotherapeutic drugs represent a valid alternative to the existing poly-mer-based formulations used for targeted delivery of anticancer drugs. Herein we report the design and development of novel self-assemb... Read More about Self-assembling benzothiazole-based gelators: a mechanistic understanding of in vitro bioactivation and gelation.

Fluorescently Labeled Morphine Derivatives for Bioimaging Studies (2018)
Journal Article
Lam, R., Gondin, A. B., Canals, M., Kellam, B., Briddon, S. J., Graham, B., & Scammells, P. J. (2018). Fluorescently Labeled Morphine Derivatives for Bioimaging Studies. Journal of Medicinal Chemistry, 61(3), 1316-1329. https://doi.org/10.1021/acs.jmedchem.7b01811

Opioids, like morphine, are the mainstay analgesics for the treatment and control of pain. Despite this, they often exhibit severe side effects that limit dose; patients often become tolerant and dependent on these drugs, which remains a major health... Read More about Fluorescently Labeled Morphine Derivatives for Bioimaging Studies.

Design and elaboration of a tractable tricyclic scaffold to synthesize druglike inhibitors of dipeptidyl peptidase-4 (DPP-4), antagonists of the C–C Chemokine Receptor Type 5 (CCR5), and highly potent and selective phosphoinositol-3 Kinase δ (PI3Kδ) inhibitors (2017)
Journal Article
Schwehm, C., Kellam, B., Garces, A., Hill, S. J., Kindon, N., Bradshaw, T. D., …Stocks, M. (2017). Design and elaboration of a tractable tricyclic scaffold to synthesize druglike inhibitors of dipeptidyl peptidase-4 (DPP-4), antagonists of the C–C Chemokine Receptor Type 5 (CCR5), and highly potent and selective phosphoinositol-3 Kinase δ (PI3Kδ) inhibitors. Journal of Medicinal Chemistry, 60(4), https://doi.org/10.1021/acs.jmedchem.6b01801

A novel molecular scaffold has been synthesized, and its incorporation into new analogues of biologically active molecules across multiple target classes will be discussed. In these studies, we have shown use of the tricyclic scaffold to synthesize p... Read More about Design and elaboration of a tractable tricyclic scaffold to synthesize druglike inhibitors of dipeptidyl peptidase-4 (DPP-4), antagonists of the C–C Chemokine Receptor Type 5 (CCR5), and highly potent and selective phosphoinositol-3 Kinase δ (PI3Kδ) inhibitors.

Developing a self-healing supramolecular nucleoside hydrogel (2016)
Journal Article
Skilling, K. J., Kellam, B., Ashford, M., Bradshaw, T. D., & Marlow, M. (2016). Developing a self-healing supramolecular nucleoside hydrogel. Soft Matter, 12(43), 8950-8957. https://doi.org/10.1039/c6sm01779g

© 2016 The Royal Society of Chemistry. Low molecular weight gelator hydrogels provide a viable alternative to traditional polymer based drug delivery platforms, owing to their tunable stability and in most cases inherent biocompatibility. Here we rep... Read More about Developing a self-healing supramolecular nucleoside hydrogel.

Alkylation of staurosporine to derive a kinase probe for fluorescence applications (2016)
Journal Article
Disney, A. J., Kellam, B., & Dekker, L. V. (in press). Alkylation of staurosporine to derive a kinase probe for fluorescence applications. ChemMedChem, 11, https://doi.org/10.1002/cmdc.201500589

The natural product staurosporine is a high-affinity inhibitor of nearly all mammalian protein kinases.The labelling of staurosporine has proven effective as a means of generating protein kinase research tools. Most tools have been generated by acyla... Read More about Alkylation of staurosporine to derive a kinase probe for fluorescence applications.

Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the μ-Opioid Receptor (2015)
Journal Article
Schembri, L. S., Stoddart, L. A., Briddon, S. J., Kellam, B., Canals, M., Graham, B., & Scammells, P. J. (2015). Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the μ-Opioid Receptor. Journal of Medicinal Chemistry, 58(24), 9754-9767. https://doi.org/10.1021/acs.jmedchem.5b01664

Fluorescently labeled ligands are useful pharmacological research tools for studying receptor localization, trafficking, and signaling processes via fluorescence imaging. They are also employed in fluorescent binding assays. This study is centered on... Read More about Synthesis, Biological Evaluation, and Utility of Fluorescent Ligands Targeting the μ-Opioid Receptor.

Synthesis of new DPP-4 inhibitors based on a novel tricyclic scaffold (2015)
Journal Article
Schwehm, C., Li, J., Song, H., Hu, X., Kellam, B., & Stocks, M. (2015). Synthesis of new DPP-4 inhibitors based on a novel tricyclic scaffold. ACS Medicinal Chemistry Letters, 6(3), https://doi.org/10.1021/ml500503n

A novel molecular scaffold has been synthesized and its synthesis and incorporation into new analogues of biologically active molecules will be discussed. A comparison of the inhibitory activity of these compounds to the known type-2 diabetes compoun... Read More about Synthesis of new DPP-4 inhibitors based on a novel tricyclic scaffold.

Gelation properties of self-assembling N-acyl modified cytidine derivatives (2014)
Journal Article
Skilling, K. J., Ndungu, A., Kellam, B., Ashford, M., Bradshaw, T. D., & Marlow, M. (in press). Gelation properties of self-assembling N-acyl modified cytidine derivatives. Journal of Materials Chemistry B, 2(47), https://doi.org/10.1039/C4TB01375A

In this study we report the synthesis of new cytidine derived gelators possessing acyl chains of different lengths. These low molecular weight gelators were shown to form self-supporting gels at 0.5 % (w/v) in binary systems of aqueous miscible polar... Read More about Gelation properties of self-assembling N-acyl modified cytidine derivatives.

The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs (2014)
Journal Article
Vernall, A. J., Hill, S. J., & Kellam, B. (2014). The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs. British Journal of Pharmacology, 171(5), https://doi.org/10.1111/bph.12265

The past decade has witnessed fluorescently tagged drug molecules gaining significant attraction in their use as pharmacological tools with which to visualize and interrogate receptor targets at the single-cell level. Additionally, one can generate d... Read More about The evolving small-molecule fluorescent-conjugate toolbox for Class A GPCRs.

Conversion of a non-selective adenosine receptor antagonist into A 3-selective high affinity fluorescent probes using peptide-based linkers (2013)
Journal Article
Vernall, A. J., Stoddart, L. A., Briddon, S. J., Ng, H. W., Laughton, C. A., Doughty, S. W., …Kellam, B. (2013). Conversion of a non-selective adenosine receptor antagonist into A 3-selective high affinity fluorescent probes using peptide-based linkers. Organic and Biomolecular Chemistry, 11(34), 5673-5682. https://doi.org/10.1039/c3ob41221k

Advances in fluorescence-based imaging technologies have helped propel the study of real-time biological readouts and analysis across many different areas. In particular the use of fluorescent ligands as chemical tools to study proteins such as G pro... Read More about Conversion of a non-selective adenosine receptor antagonist into A 3-selective high affinity fluorescent probes using peptide-based linkers.