Skip to main content

Research Repository

Advanced Search

Outputs (88)

Robustness- and weight-based resource measures without convexity restriction: Multicopy witness and operational advantage in static and dynamical quantum resource theories (2024)
Journal Article
Kuroiwa, K., Takagi, R., Adesso, G., & Yamasaki, H. (2024). Robustness- and weight-based resource measures without convexity restriction: Multicopy witness and operational advantage in static and dynamical quantum resource theories. Physical Review A, 109(4), Article 042403. https://doi.org/10.1103/PhysRevA.109.042403

Quantum resource theories (QRTs) provide a unified framework to analyze quantum properties as resources for achieving advantages in quantum information processing. The generalized robustness and the weight of resource have been gaining increasing att... Read More about Robustness- and weight-based resource measures without convexity restriction: Multicopy witness and operational advantage in static and dynamical quantum resource theories.

Every quantum helps: Operational advantage of quantum resources beyond convexity (2024)
Journal Article
Kuroiwa, K., Takagi, R., Adesso, G., & Yamasaki, H. (2024). Every quantum helps: Operational advantage of quantum resources beyond convexity. Physical Review Letters, 132(15), Article 150201. https://doi.org/10.1103/PhysRevLett.132.150201

Identifying what quantum-mechanical properties are useful to untap a superior performance in quantum technologies is a pivotal question. Quantum resource theories provide a unified framework to analyze and understand such properties, as successfully... Read More about Every quantum helps: Operational advantage of quantum resources beyond convexity.

A Post-Quantum Associative Memory (2023)
Journal Article
Lami, L., Goldwater, D., & Adesso, G. (2023). A Post-Quantum Associative Memory. Journal of Physics A: Mathematical and Theoretical, 56(45), Article 455304. https://doi.org/10.1088/1751-8121/acfeb7

Associative memories are devices storing information that can be fully retrieved given partial disclosure of it. We examine a toy model of associative memory and the ultimate limitations it is subjected to within the framework of general probabilisti... Read More about A Post-Quantum Associative Memory.

Fundamental limitations to key distillation from Gaussian states with Gaussian operations (2023)
Journal Article
Lami, L., Mišta, L., & Adesso, G. (2023). Fundamental limitations to key distillation from Gaussian states with Gaussian operations. Physical Review Research, 5(3), Article 033153. https://doi.org/10.1103/PhysRevResearch.5.033153

We establish fundamental upper bounds on the amount of secret key that can be extracted from quantum Gaussian states by using only local Gaussian operations, local classical processing, and public communication. For one-way public communication, or w... Read More about Fundamental limitations to key distillation from Gaussian states with Gaussian operations.

Towards the ultimate brain: Exploring scientific discovery with ChatGPT AI (2023)
Journal Article
Adesso, G. (2023). Towards the ultimate brain: Exploring scientific discovery with ChatGPT AI. AI Magazine, 44(3), 328-342. https://doi.org/10.1002/aaai.12113

This paper presents a novel approach to scientific discovery using an artificial intelligence (AI) environment known as ChatGPT, developed by OpenAI. This is the first paper entirely generated with outputs from ChatGPT. We demonstrate how ChatGPT can... Read More about Towards the ultimate brain: Exploring scientific discovery with ChatGPT AI.

GPT4 : The Ultimate Brain (2022)
Working Paper
Adesso, G. GPT4 : The Ultimate Brain

We introduce a powerful general probabilistic theory, GPT4, that extends classical and quantum theories to include higher-dimensional probabilistic models. GPT4 results from the four-fold integration of GPT in physics (Generalized Probabilistic T... Read More about GPT4 : The Ultimate Brain.

Catalytic Gaussian thermal operations (2022)
Journal Article
Yadin, B., Jee, H., Sparaciari, C., Adesso, G., & Serafini, A. (2022). Catalytic Gaussian thermal operations. Journal of Physics A: Mathematical and Theoretical, 55(32), Article 325301. https://doi.org/10.1088/1751-8121/ac7e09

We examine the problem of state transformations in the framework of Gaussian thermal resource theory in the presence of catalysts. To this end, we introduce an expedient parametrisation of covariance matrices in terms of principal mode temperatures a... Read More about Catalytic Gaussian thermal operations.

Quantum-enhanced passive remote sensing (2022)
Journal Article
Köse, E., Adesso, G., & Braun, D. (2022). Quantum-enhanced passive remote sensing. Physical Review A, 106(1), Article 012601. https://doi.org/10.1103/PhysRevA.106.012601

We investigate theoretically the ultimate resolution that can be achieved with passive remote sensing in the microwave regime used, e.g., on board of satellites observing Earth, such as the soil moisture and ocean salinity (SMOS) mission. We give a f... Read More about Quantum-enhanced passive remote sensing.

Holographic entanglement in spin network states: A focused review (2022)
Journal Article
Colafranceschi, E., & Adesso, G. (2022). Holographic entanglement in spin network states: A focused review. AVS Quantum Science, 4(2), Article 025901. https://doi.org/10.1116/5.0087122

In the long-standing quest to reconcile gravity with quantum mechanics, profound connections have been unveiled between concepts traditionally pertaining to a quantum information theory, such as entanglement, and constitutive features of gravity, lik... Read More about Holographic entanglement in spin network states: A focused review.

Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint (2022)
Journal Article
Sun, K., Liu, Z., Wang, Y., Hao, Z., Xu, X., Xu, J., …Lo Franco, R. (2022). Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint. Proceedings of the National Academy of Sciences, 119(21), Article e2119765119. https://doi.org/10.1073/pnas.211976511

Quantum coherence, an essential feature of quantum mechanics allowing quantum superposition of states, is a resource for quantum information processing. Coherence emerges in a fundamentally different way for nonidentical and identical particles. For... Read More about Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint.