Skip to main content

Research Repository

Advanced Search

Dr DARREN WELLS's Outputs (79)

Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits (2025)
Journal Article
Nakombo-Gbassault, P., Arenas, S., Affortit, P., Faye, A., Flis, P., Sine, B., Moukouanga, D., Gantet, P., Komba, E. K., Kane, N., Bennett, M., Wells, D., Cubry, P., Bailey, E., Grondin, A., Vigouroux, Y., & Laplaze, L. (2025). Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits. PLoS ONE, 20(5), Article e0319140. https://doi.org/10.1371/journal.pone.0319140

Pearl millet (Pennisetum glaucum) thrives in arid and nutrient-poor environments, establishing its role as a crucial cereal crop for food security in sub-Saharan Africa. Despite its remarkable adaptability, its yields remain below genetic potential,... Read More about Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits.

High-fidelity wheat plant reconstruction using 3D Gaussian splatting and neural radiance fields (2025)
Journal Article
Pound, M. P., Stuart, L. A., Wells, D. M., Atkinson, J. A., Castle-Green, S., & Walker, J. (2025). High-fidelity wheat plant reconstruction using 3D Gaussian splatting and neural radiance fields. GigaScience, 14, Article giaf022. https://doi.org/10.1093/gigascience/giaf022

Background: The reconstruction of 3-dimensional (3D) plant models can offer advantages over traditional 2-dimensional approaches by more accurately capturing the complex structure and characteristics of different crops. Conventional 3D reconstruction... Read More about High-fidelity wheat plant reconstruction using 3D Gaussian splatting and neural radiance fields.

Root Growth and Development in “Real Life”: Advances and Challenges in Studying Root–Environment Interactions (2025)
Journal Article
Mehra, P., Banda, J., Ogorek, L. L. P., Fusi, R., Castrillo, G., Colombi, T., Pandey, B. K., Sturrock, C. J., Wells, D. M., & Bennett, M. J. (2025). Root Growth and Development in “Real Life”: Advances and Challenges in Studying Root–Environment Interactions. Annual Review of Plant Biology, 76, 18.1–18.26. https://doi.org/10.1146/annurev-arplant-083123-074506

Plant roots play myriad roles that include foraging for resources in complex soil environments. Within this highly dynamic soil environment roots must sense, interact with, and acclimate to factors such as water availability, microbiota, and heteroge... Read More about Root Growth and Development in “Real Life”: Advances and Challenges in Studying Root–Environment Interactions.

Supporting data for "High-fidelity Wheat Plant Reconstruction using 3D Gaussian Splatting and Neural Radiance Fields" (2025)
Data
(2025). Supporting data for "High-fidelity Wheat Plant Reconstruction using 3D Gaussian Splatting and Neural Radiance Fields". [Data]. https://doi.org/10.5524/102661

The reconstruction of 3D plant models can offer advantages over traditional 2D approaches by more accurately capturing the complex structure and characteristics of different crops. Conventional 3D reconstruction techniques often produce sparse or noi... Read More about Supporting data for "High-fidelity Wheat Plant Reconstruction using 3D Gaussian Splatting and Neural Radiance Fields".

Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits (2025)
Preprint / Working Paper
Nakombo-Gbassault, P., Arenas, S., Affortit, P., Faye, A., Flis, P., Sine, B., Moukouanga, D., Gantet, P., Kosh Komba, E., Kane, N., Bennett, M., Wells, D., Cubry, P., Bailey, E., Grondin, A., Vigouroux, Y., & Laplaze, L. Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits

Pearl millet (Pennisetum glaucum) thrives in arid and nutrient-poor environments, establishing its role as a crucial cereal crop for food security in sub-Saharan Africa. Despite its remarkable adaptability, its yields remain below genetic potential,... Read More about Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits.

Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner (2024)
Preprint / Working Paper
Affortit, P., Faye, A., Jones, D. H., Benson, E., Sine, B., Burridge, J., Ndoye, M. S., Barry, L., Moukouanga, D., Barnard, S., Bhosale, R., Pridmore, T., Gantet, P., Vadez, V., Cubry, P., Kane, N., Bennett, M., Atkinson, J. A., Laplaze, L., Wells, D. M., & Grondin, A. (2024). Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner

Pearl millet is a key cereal for food security in drylands but its yield is strongly impacted by drought. We investigated how root anatomical traits contribute to mitigating the effects of vegetative drought stress in pearl millet.

We examined ass... Read More about Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner.

A novel root hair mutant, srh1, affects root hair elongation and reactive oxygen species levels in wheat (2024)
Journal Article
Tsang, I., Thomelin, P., Ober, E. S., Rawsthorne, S., Atkinson, J. A., Wells, D. M., Percival-Alwyn, L., Leigh, F. J., & Cockram, J. (2024). A novel root hair mutant, srh1, affects root hair elongation and reactive oxygen species levels in wheat. Frontiers in Plant Science, 15, Article 1490502. https://doi.org/10.3389/fpls.2024.1490502

Background: Root hairs are single-celled projections on root surfaces, critical for water and nutrient uptake. Here, we describe the first short root hair mutant in wheat (Triticum aestivum L.), identified in a mutagenized population and termed here... Read More about A novel root hair mutant, srh1, affects root hair elongation and reactive oxygen species levels in wheat.

Modeling reveals synergies among root traits for phosphorus acquisition in pearl millet (2024)
Journal Article
Ndoye, M., Lucas, M., Ajmera, I., Sine, B., Faye, A., Burridge, J., Ngom, M., Gantet, P., Wells, D., Kane, N., Lynch, J., Diédhiou, A., Grondin, A., & Laplaze, L. (2024). Modeling reveals synergies among root traits for phosphorus acquisition in pearl millet. Crop Science, 3(3), Article 100059. https://doi.org/10.1016/j.cropd.2024.100059

Pearl millet is a key food security grain crop in the world's drylands due to its tolerance to abiotic stresses. However, its yield remains low and is negatively impacted by climate change. Root phenes are potential targets to improve crop productivi... Read More about Modeling reveals synergies among root traits for phosphorus acquisition in pearl millet.

Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet (2024)
Journal Article
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-. S., Barrachina, C., …Laplaze, L. (2024). Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet. eLife, https://doi.org/10.7554/eLife.86169

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.

Author Response: Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet (2024)
Preprint / Working Paper
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-S., Barrachina, C., …Laplaze, L. Author Response: Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Author Response: Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.

Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet (2023)
Preprint / Working Paper
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-. S., Barrachina, C., …Laplaze, L. Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet.

Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice (2023)
Journal Article
Robson, J. K., Ferguson, J. N., McAusland, L., Atkinson, J. A., Tranchant-Dubreuil, C., Cubry, P., Sabot, F., Wells, D. M., Price, A. H., Wilson, Z. A., & Murchie, E. H. (2023). Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. Journal of Experimental Botany, 74(17), 5181-5197. https://doi.org/10.1093/jxb/erad239

Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic ra... Read More about Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice.

Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters (2023)
Journal Article
Ware, A., Jones, D. H., Flis, P., Chrysanthou, E., Smith, K. E., Kümpers, B. M., Yant, L., Atkinson, J. A., Wells, D. M., Bhosale, R., & Bishopp, A. (2023). Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters. Current Biology, 33(9), 1795-1802. https://doi.org/10.1016/j.cub.2023.03.025

Organ loss occurs frequently during plant and animal evolution. Sometimes, non-functional organs are retained through evolution. Vestigial organs are defined as genetically determined structures that have lost their ancestral (or salient) function. D... Read More about Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters.

Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet (2023)
Preprint / Working Paper
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-. S., Barrachina, C., …Laplaze, L. (2024). Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet.

Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat (2022)
Journal Article
Kareem, S. H., Hawkesford, M. J., DeSilva, J., Weerasinghe, M., Wells, D. M., Pound, M. P., Atkinson, J. A., & Foulkes, M. J. (2022). Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat. European Journal of Agronomy, 140, Article 126603. https://doi.org/10.1016/j.eja.2022.126603

Root system architecture (RSA) is important in optimizing the use of nitrogen. High-throughput phenotyping techniques may be used to study root system architecture traits under controlled environments. A root phenotyping platform, consisting of germi... Read More about Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat.

Non-invasive isotope-based hydrodynamic imaging in plant roots at cellular resolution (2022)
Presentation / Conference Contribution
Couvreur, V., Pascut, F. C., Dietrich, D., Leftley, N., Reyt, G., Boursiac, Y., Calvo-Polanco, M., Casimiro, I., Maurel, C., Salt, D. E., Draye, X., Wells, D. M., Bennett, M. J., & Webb, K. F. (2022, May). Non-invasive isotope-based hydrodynamic imaging in plant roots at cellular resolution. Presented at EGU General Assembly 2022, Vienna, Austria and online

A key impediment to studying water-related mechanisms in plants is the inability to noninvasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modellin... Read More about Non-invasive isotope-based hydrodynamic imaging in plant roots at cellular resolution.

Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis (2022)
Journal Article
De Pessemier, J., Moturu, T. R., Nacry, P., Ebert, R., De Gernier, H., Tillard, P., Swarup, K., Wells, D. M., Haseloff, J., Murray, S. C., Bennett, M. J., Inze, D., Vincent, C. I., & Hermans, C. (2022). Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. Journal of Experimental Botany, 73(11), 3569-3583

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treat... Read More about Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis.

Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux (2022)
Journal Article
Mellor, N. L., Voß, U., Ware, A., Janes, G., Barrack, D., Bishopp, A., Bennett, M. J., Geisler, M., Wells, D. M., & Band, L. R. (2022). Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. Plant Cell, 34(6), 2309–2327. https://doi.org/10.1093/plcell/koac086

Members of the B family of membrane-bound ATP-binding cassette (ABC) transporters represent key components of the auxin-efflux machinery in plants. Over the last two decades experimental studies have shown that modifying ABCB expression affects auxin... Read More about Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux.

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat (2022)
Journal Article
GRIFFITHS, M., ATKINSON, J. A., Gardiner, L. J., SWARUP, R., POUND, M. P., WILSON, M. H., BENNETT, M. J., & WELLS, D. M. (2022). Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21(4), 917-932. https://doi.org/10.1016/s2095-3119%2821%2963700-0

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.... Read More about Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat.

X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil (2022)
Journal Article
Griffiths, M., Mellor, N., Sturrock, C. J., Atkinson, B. S., Johnson, J., Mairhofer, S., York, L. M., Atkinson, J. A., Soltaninejad, M., Foulkes, J. F., Pound, M. P., Mooney, S. J., Pridmore, T. P., Bennett, M. J., & Wells, D. M. (2022). X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil. Plant Phenome Journal, 5(1), Article e20036. https://doi.org/10.1002/ppj2.20036

The spatial arrangement of the root system, termed root system architecture, is important for resource acquisition as it directly affects the soil zone explored. Methods for phenotyping roots are mostly destructive, which prevents analysis of roots o... Read More about X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil.