Skip to main content

Research Repository

Advanced Search

Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits

Nakombo-Gbassault, Princia; Arenas, Sebastian; Affortit, Pablo; Faye, Awa; Flis, Paulina; Sine, Bassirou; Moukouanga, Daniel; Gantet, Pascal; Kosh Komba, Ephrem; Kane, Ndjido; Bennett, Malcolm; Wells, Darren; Cubry, Philippe; Bailey, Elizabeth; Grondin, Alexandre; Vigouroux, Yves; Laplaze, Laurent

Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits Thumbnail


Authors

Princia Nakombo-Gbassault

Sebastian Arenas

Pablo Affortit

Awa Faye

Paulina Flis

Bassirou Sine

Daniel Moukouanga

Pascal Gantet

Ephrem Kosh Komba

Ndjido Kane

Philippe Cubry

Alexandre Grondin

Yves Vigouroux

Laurent Laplaze



Abstract

Pearl millet (Pennisetum glaucum) thrives in arid and nutrient-poor environments, establishing its role as a crucial cereal crop for food security in sub-Saharan Africa. Despite its remarkable adaptability, its yields remain below genetic potential, primarily due to limited water and nutrient availability. In this study, we conducted ionomic profiling and genome-wide association studies (GWAS) in field conditions across two growing seasons to unravel the genetic basis of nutrient acquisition in pearl millet. Soil ion content analyses revealed significant differences in nutrient distribution between field sites, while certain ions, such as phosphorus (P) and zinc (Zn), consistently displayed stratified accumulation patterns across years, suggesting stable depth-dependent trends. Evaluation of a genetically diverse panel of inbred lines revealed substantial variation in leaf ion concentrations, with high heritability estimates. Correlations between leaf ion content and root anatomical or agromorphological traits highlighted the intricate interplay between genetic and environmental factors shaping leaf ion accumulation. These analyses also uncovered potential trade-offs in nutrient acquisition strategies. GWAS identified genomic regions associated with leaf ion concentrations, and the integration of genetic and gene expression data facilitated the identification of candidate genes implicated in ion transport and homeostasis. Our findings provide valuable insights into the genetic regulation of nutrient acquisition in pearl millet, offering potential targets for breeding nutrient-efficient and climate-resilient varieties. This study underscores the importance of integrating genetic, physiological, and root architectural traits to enhance agricultural productivity and sustainability in resource-constrained environments.

Citation

Nakombo-Gbassault, P., Arenas, S., Affortit, P., Faye, A., Flis, P., Sine, B., Moukouanga, D., Gantet, P., Kosh Komba, E., Kane, N., Bennett, M., Wells, D., Cubry, P., Bailey, E., Grondin, A., Vigouroux, Y., & Laplaze, L. Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits

Working Paper Type Preprint
Deposit Date Mar 3, 2025
Publicly Available Date Mar 3, 2025
DOI https://doi.org/10.1101/2025.01.30.635630
Public URL https://nottingham-repository.worktribe.com/output/45303072

Files





You might also like



Downloadable Citations