Skip to main content

Research Repository

Advanced Search

Outputs (38)

Physiological, molecular, and genetic mechanism of action of the biostimulant Quantis™ for increased thermotolerance of potato (Solanum tuberosum L.) (2024)
Journal Article
Jayaweera, D. P., Dambire, C., Angelopoulou, D., Munné-Bosch, S., Swarup, R., & Ray, R. V. (2024). Physiological, molecular, and genetic mechanism of action of the biostimulant Quantis™ for increased thermotolerance of potato (Solanum tuberosum L.). Chemical and Biological Technologies in Agriculture, 11(1), 9. https://doi.org/10.1186/s40538-023-00531-3

Background: Raising global temperatures limit crop productivity and new strategies are needed to improve the resilience of thermosensitive crops such as potato (Solanum tuberosum L.). Biostimulants are emerging as potential crop protection products a... Read More about Physiological, molecular, and genetic mechanism of action of the biostimulant Quantis™ for increased thermotolerance of potato (Solanum tuberosum L.).

Mechanistic insight into the role of AUXIN RESISTANCE4 in trafficking of AUXIN1 and LIKE AUX1-2 (2023)
Journal Article
Tidy, A., Abu Bakar, N., Carrier, D., Kerr, I. D., Hodgman, C., Bennett, M. J., & Swarup, R. (2024). Mechanistic insight into the role of AUXIN RESISTANCE4 in trafficking of AUXIN1 and LIKE AUX1-2. Plant Physiology, 194(1), 422-433. https://doi.org/10.1093/plphys/kiad506

AUXIN RESISTANCE4 (AXR4) regulates the trafficking of auxin influx carrier AUXIN1 (AUX1), a plasma-membrane protein that predominantly localizes to the endoplasmic reticulum (ER) in the absence of AXR4. In Arabidopsis (Arabidopsis thaliana), AUX1 is... Read More about Mechanistic insight into the role of AUXIN RESISTANCE4 in trafficking of AUXIN1 and LIKE AUX1-2.

ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana (2023)
Journal Article
Zubrycka, A., Dambire, C., Dalle Carbonare, L., Sharma, G., Boeckx, T., Swarup, K., …Holdsworth, M. J. (2023). ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana. Nature Communications, 14, Article 4665. https://doi.org/10.1038/s41467-023-40366-y

Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPON... Read More about ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana.

Hydraulic flux–responsive hormone redistribution determines root branching (2022)
Journal Article
Mehra, P., Pandey, B. K., Melebari, D., Banda, J., Leftley, N., Couvreur, V., …Bennett, M. J. (2022). Hydraulic flux–responsive hormone redistribution determines root branching. Science, 378(6621), 762-768. https://doi.org/10.1126/science.add3771

Plant roots exhibit plasticity in their branching patterns to forage efficiently for heterogeneously distributed resources, such as soil water. The xerobranching response represses lateral root formation when roots lose contact with water. Here, we s... Read More about Hydraulic flux–responsive hormone redistribution determines root branching.

Phosphite treatment can improve root biomass and nutrition use efficiency in wheat (2022)
Journal Article
Mohammed, U., Davis, J., Rossall, S., Swarup, K., Czyzewicz, N., Bhosale, R., …Swarup, R. (2022). Phosphite treatment can improve root biomass and nutrition use efficiency in wheat. Frontiers in Plant Science, 13, Article 1017048. https://doi.org/10.3389/fpls.2022.1017048

Phosphite represents a reduced form of phosphate that belongs to a class of crop growth-promoting chemicals termed biostimulants. Previous research has shown that phosphite application can enhance root growth, but its underlying mechanism, especially... Read More about Phosphite treatment can improve root biomass and nutrition use efficiency in wheat.

Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism (2022)
Journal Article
Fusi, R., Rosignoli, S., Lou, H., Sangiorgi, G., Bovina, R., Pattem, J. K., …Salvi, S. (2022). Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism. Proceedings of the National Academy of Sciences,

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus anti-gravitropic offset (AGO) mechanisms. Here we report a new root angle regulatory gene termed ENHANCED GRA... Read More about Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism.

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat (2022)
Journal Article
GRIFFITHS, M., ATKINSON, J. A., Gardiner, L. J., SWARUP, R., POUND, M. P., WILSON, M. H., …WELLS, D. M. (2022). Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21(4), 917-932. https://doi.org/10.1016/s2095-3119%2821%2963700-0

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.... Read More about Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat.

Out of Africa: characterising the natural variation in dynamic photosynthetic traits in a diverse population of African rice (Oryza glaberrima) (2021)
Journal Article
Cowling, S. B., Treeintong, P., Ferguson, J., Soltani, H., Swarup, R., Mayes, S., & Murchie, E. H. (2022). Out of Africa: characterising the natural variation in dynamic photosynthetic traits in a diverse population of African rice (Oryza glaberrima). Journal of Experimental Botany, 73(10), 3283–3298. https://doi.org/10.1093/jxb/erab459

African rice (Oryza glaberrima) has adapted to challenging environments and is a promising source of genetic variation. We analysed dynamics of photosynthesis and morphology in a reference set of 155 O. glaberrima accessions. Plants were grown in an... Read More about Out of Africa: characterising the natural variation in dynamic photosynthetic traits in a diverse population of African rice (Oryza glaberrima).

Arabidopsis antibody resources for functional studies in plants (2020)
Journal Article
Oh, J., Wilson, M., Hill, K., Leftley, N., Hodgman, C., Bennett, M. J., & Swarup, R. (2020). Arabidopsis antibody resources for functional studies in plants. Scientific Reports, 10(1), Article 21945. https://doi.org/10.1038/s41598-020-78689-1

© 2020, The Author(s). Here we report creation of a unique and a very valuable resource for Plant Scientific community worldwide. In this era of post-genomics and modelling of multi-cellular systems using an integrative systems biology approach, bett... Read More about Arabidopsis antibody resources for functional studies in plants.

Developmental roles of AUX1/LAX auxin influx carriers in plants (2019)
Journal Article
Swarup, R., & Bhosale, R. (2019). Developmental roles of AUX1/LAX auxin influx carriers in plants. Frontiers in Plant Science, 10, https://doi.org/10.3389/fpls.2019.01306

Plant hormone auxin regulates several aspects of plant growth and development. Auxin is predominantly synthesized in the shoot apex and developing leaf primordia and from there it is transported to the target tissues e.g. roots. Auxin transport is po... Read More about Developmental roles of AUX1/LAX auxin influx carriers in plants.

Author Correction: Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation (Scientific Reports, (2019), 9, 1, (5584), 10.1038/s41598-019-41922-7) (2019)
Journal Article
Mohammed, U., Caine, R. S., Atkinson, J. A., Harrison, E. L., Wells, D., Chater, C. C., …Murchie, E. H. (2019). Author Correction: Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation (Scientific Reports, (2019), 9, 1, (5584), 10.1038/s41598-019-41922-7). Scientific Reports, 9(1), Article 14827. https://doi.org/10.1038/s41598-019-51402-7

© 2019, The Author(s). The Acknowledgements section in this Article is incomplete. “This work was supported by the Biotechnology and Biological Sciences Research Council [grant numbers BB/ R004633/1, BB/N021061/1, BB/N013646/1]. JAA and DMW receive f... Read More about Author Correction: Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation (Scientific Reports, (2019), 9, 1, (5584), 10.1038/s41598-019-41922-7).

Role of cis-zeatin in root responses to phosphate starvation (2019)
Journal Article
Silva-Navas, J., Conesa, C. M., Saez, A., Navarro-Nelia, S., Garcia-Mina, J. M., Zamarreño, A. M., …del Pozo, J. C. (2019). Role of cis-zeatin in root responses to phosphate starvation. New Phytologist, 224(1), 242-257. https://doi.org/10.1111/nph.16020

Phosphate (Pi) is an essential nutrient for all organisms. Root are underground organs, but the majority of the root biology studies have been done growing the root system in presence of light. Root illumination alters the Pi starvation response (... Read More about Role of cis-zeatin in root responses to phosphate starvation.

Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation (2019)
Journal Article
Mohammed, U., Caine, R. S., Atkinson, J. A., Harrison, E. L., Wells, D., Chater, C. C., …Murchie, E. H. (2019). Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation. Scientific Reports, 9(1), Article 5584. https://doi.org/10.1038/s41598-019-41922-7

Stomata are adjustable pores in the aerial epidermis of plants. The role of stomata is usually described in terms of the trade-off between CO2 uptake and water loss. Little consideration has been given to their interaction with below-ground developme... Read More about Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation.

Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat (2019)
Other
Griffiths, M., Atkinson, J. A., Gardiner, L., Swarup, R., Pound, M. P., Wilson, M. H., …Wells, D. M. (2019). Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource dependent response in wheat (Triticum aestivum L.... Read More about Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat.

Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions (2018)
Journal Article
Caine, R. S., Yin, X., Sloan, J., Harrison, E. L., Mohammed, U., Fulton, T., …Gray, J. E. (2019). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 221(1), 371-384. https://doi.org/10.1111/nph.15344

Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expe... Read More about Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions.

Erratum: Author Correction: A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (Nature communications (2018) 9 1 (1409)) (2018)
Journal Article
Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F. H., Hartmann, A., Traini, R., …Swarup, R. (2018). Erratum: Author Correction: A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (Nature communications (2018) 9 1 (1409)). Nature Communications, 9(1), 1818. https://doi.org/10.1038/s41467-018-04281-x

The original version of this Article omitted the following from the Acknowledgements: 'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)) (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)). Nature Communications, 9(1), Article 1810. https://doi.org/10.1038/s41467-018-04280-y

The original version of this Article omitted the following from the Acknowledgements:'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-03850-4

Root traits such as root angle and hair length influence resource acquisition particularly for immobile nutrients like phosphorus (P). Here, we attempted to modify root angle in rice by disrupting the OsAUX1 auxin influx transporter gene in an effort... Read More about Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate.

A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (2018)
Journal Article
Giehl, R. F. H., Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F., Hartmann, A., …Swarup, R. (2018). A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 9(1), 1-9. https://doi.org/10.1038/s41467-018-03851-3

Phosphate (P) is an essential macronutrient for plant growth. Roots employ adaptive mechanisms to forage for P in soil. Root hair elongation is particularly important since P is immobile. Here we report that auxin plays a critical role promoting root... Read More about A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate.

Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice (2018)
Journal Article
Hubbart, S., Smillie, I. R., Heatley, M., Swarup, R., Foo, C. C., Zhao, L., & Murchie, E. H. (2018). Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Communications Biology, 1, Article 22. https://doi.org/10.1038/s42003-018-0026-6

High sunlight can raise plant growth rates but can potentially cause cellular damage. The likelihood of deleterious effects is lowered by a sophisticated set of photoprotective mechanisms, one of the most important being the controlled dissipation of... Read More about Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice.

The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth (2018)
Journal Article
Schoenaers, S., Balcerowicz, D., Breen, G., Hill, K., Zdanio, M., Mouille, G., …Vissenberg, K. (2018). The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth. Current Biology, 28(5), 722-732.e6. https://doi.org/10.1016/j.cub.2018.01.050

© 2018 Elsevier Ltd Root hairs facilitate a plant's ability to acquire soil anchorage and nutrients. Root hair growth is regulated by the plant hormone auxin and dependent on localized synthesis, secretion, and modification of the root hair tip cell... Read More about The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth.

Root gravitropism: quantification, challenges, and solutions (2018)
Journal Article
Muller, L., Bennett, M. J., French, A., Wells, D. M., & Swarup, R. (2018). Root gravitropism: quantification, challenges, and solutions. Methods in Molecular Biology, 1761, 103-112. https://doi.org/10.1007/978-1-4939-7747-5_8

© 2018, Springer Science+Business Media, LLC. Better understanding of root traits such as root angle and root gravitropism will be crucial for development of crops with improved resource use efficiency. This chapter describes a high-throughput, autom... Read More about Root gravitropism: quantification, challenges, and solutions.

MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis (2017)
Journal Article
Roy, S., Robson, F., Lilley, J., Liu, C., Cheng, X., Wen, J., …Murray, J. D. (2017). MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis. Plant Physiology, 174(1), 326-338. https://doi.org/10.1104/pp.16.01473

Most legume plants can form nodules, specialized lateral organs that form on roots, and house nitrogen-fixing bacteria collectively called rhizobia. The uptake of the phytohormone auxin into cells is known to be crucial for development of lateral roo... Read More about MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis.

SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice (2017)
Journal Article
Henry, S., Dievart, A., Divol, F., Pauluzzi, G., Meynard, D., Swarup, R., …Périn, C. (2017). SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice. Developmental Biology, 425(1), 1-7. https://doi.org/10.1016/j.ydbio.2017.03.001

The number of root cortex cell layers varies among plants, and many species have several cortical cell layers. We recently demonstrated that the two rice orthologs of the Arabidopsis SHR gene, OsSHR1 and OsSHR2, could complement the A. thaliana shr m... Read More about SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.

Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein (2017)
Journal Article
Hunt, L., Amsbury, S., Baillie, A., Movahedi, M., Mitchell, A., Afsharinafar, M., …Gray, J. E. (2017). Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein. Plant Physiology, 174(2), https://doi.org/10.1104/pp.16.01715

Stomata are formed by a pair of guard cells which have thickened, elastic cell walls to withstand the large increases in turgor pressure that have to be generated to open the pore that they surround. We have characterised FOCL1, a guard cell-expresse... Read More about Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein.

One gene, many proteins: mapping cell-specific alternative splicing in plants (2016)
Journal Article
Swarup, R., Crespi, M., & Bennett, M. J. (2016). One gene, many proteins: mapping cell-specific alternative splicing in plants. Developmental Cell, 39(4), 383-385. https://doi.org/10.1016/j.devcel.2016.11.002

Pre-mRNA alternative splicing (AS) generates protein variants from a single gene that can create novel regulatory opportunities. In this issue of Developmental Cell, Li et al. (2016) present a high-resolution expression map of AS events in Arabidopsi... Read More about One gene, many proteins: mapping cell-specific alternative splicing in plants.

A ‘growing’ role for phosphites in promoting plant growth and development (2016)
Journal Article
Rossall, S., Qing, C., Paneri, M., Bennett, M., & Swarup, R. (2016). A ‘growing’ role for phosphites in promoting plant growth and development. Acta Horticulturae, 1148(1148), 61-68. https://doi.org/10.17660/ActaHortic.2016.1148.7

There is some on-going controversy about the role of phosphites in plant development. Little or no evidence is available that phosphites can be converted to phosphates, and thus directly enhance plant nutrition. Some phosphite-based products have bee... Read More about A ‘growing’ role for phosphites in promoting plant growth and development.

Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root (2016)
Journal Article
Street, I. H., Mathews, D. E., Yamburkenko, M. V., Sorooshzadeh, A., John, R. T., Swarup, R., …Schaller, G. E. (2016). Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development, 143(21), 3982-3993. https://doi.org/10.1242/dev.132035

Hormonal interactions are critical for plant development. In Arabidopsis, cytokinins inhibit root growth through effects on cell proliferation and cell elongation. Here we define key mechanistic elements in a regulatory network by which cytokinin inh... Read More about Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root.

Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis (2016)
Journal Article
Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., …Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. https://doi.org/10.1073/pnas.1604375113

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control t... Read More about Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis.

Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat (2016)
Journal Article
Drakulic, J., Ajigboye, O., Swarup, R., Bruce, T., & Ray, R. V. (2016). Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat. Applied and Environmental Microbiology, 82(22), 6548-6556. https://doi.org/10.1128/AEM.02343-16

Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesiz... Read More about Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat.

Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3 (2016)
Journal Article
Porco, S., Larrieu, A., Du, Y., Gaudinier, A., Goh, T., Swarup, K., …Bennett, M. J. (2016). Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development, 143(18), 3340-3349. https://doi.org/10.1242/dev.136283

Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-induc... Read More about Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.

Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone (2015)
Journal Article
Wilson, M. H., Holman, T. J., Sørensen, I., Cancho-Sanchez, E., Wells, D. M., Swarup, R., …Hodgman, T. C. (2015). Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Frontiers in Cell and Developmental Biology, 3(FEB), Article 10. https://doi.org/10.3389/fcell.2015.00010

Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth an... Read More about Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone.

Auxin influx importers modulate serration along the leaf margin (2015)
Journal Article
Kasprzewska, A., Swarup, R., Carter, R., Bennett, M., Monk, N., Hobbs, J. K., & Fleming, A. (2015). Auxin influx importers modulate serration along the leaf margin. Plant Journal, 83(4), 705-718. https://doi.org/10.1111/tpj.12921

Leaf shape in Arabidopsis is modulated by patterning events in the margin that utilize a PIN‐based auxin exporter/CUC2 transcription factor system to define regions of promotion and retardation of growth, leading to morphogenesis. In addition to auxi... Read More about Auxin influx importers modulate serration along the leaf margin.

Plant embryogenesis requires AUX/LAX-mediated auxin influx (2015)
Journal Article
Robert, H. S., Grunewald, W., Sauer, M., Cannoot, B., Soriano, M., Swarup, R., …Friml, J. (2015). Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development, 142(4), 702-711. https://doi.org/10.1242/dev.115832

The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during emb... Read More about Plant embryogenesis requires AUX/LAX-mediated auxin influx.

The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root (2014)
Journal Article
Kumpf, R., Thorstensen, T., Aminur Rahman, M. A., Heyman, J., Zeynep Nenseth, H., Lammens, T., …Aalen, R. B. (2014). The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root. Plant Physiology, 166(2), 632-643. https://doi.org/10.1104/pp.114.244798

© 2014 American Society of Plant Biologists. All rights reserved. The stem cell niche of the Arabidopsis (Arabidopsis thaliana) primary root apical meristem is composed of the quiescent (or organizing) center surrounded by stem (initial) cells for th... Read More about The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root.

Systems Analysis of Auxin Transport in the Arabidopsis Root Apex (2014)
Journal Article
Band, L. R., Wells, D. M., Fozard, J. A., Ghetiu, T., French, A. P., Pound, M. P., …Bennett, M. J. (2014). Systems Analysis of Auxin Transport in the Arabidopsis Root Apex. Plant Cell, 26(3), 862-875. https://doi.org/10.1105/tpc.113.119495

Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the... Read More about Systems Analysis of Auxin Transport in the Arabidopsis Root Apex.

Small Ubiquitin-like Modifier Protein SUMO Enables Plants to Control Growth Independently of the Phytohormone Gibberellin (2014)
Journal Article
Conti, L., Nelis, S., Zhang, C., Woodcock, A., Swarup, R., Galbiati, M., …Sadanandom, A. (2014). Small Ubiquitin-like Modifier Protein SUMO Enables Plants to Control Growth Independently of the Phytohormone Gibberellin. Developmental Cell, 28(1), 102-110. https://doi.org/10.1016/j.devcel.2013.12.004

Plants survive adverse conditions by modulating their growth in response to a changing environment. Gibberellins (GAs) play a key role in these adaptive responses by stimulating the degradation of growth-repressing DELLA proteins. GA binding to its r... Read More about Small Ubiquitin-like Modifier Protein SUMO Enables Plants to Control Growth Independently of the Phytohormone Gibberellin.