Skip to main content

Research Repository

Advanced Search

All Outputs (13)

Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient (2024)
Journal Article
Rivers, G., Lion, A., Putri, N. R. E., Rance, G. A., Moloney, C., Taresco, V., …He, Y. (2024). Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient.

Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers” (2022)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., …Wildman, R. D. (2022). Correction to “Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers”. ACS Applied Materials and Interfaces, 14(6), 8654. https://doi.org/10.1021/acsami.2c00035

The chemical structure of the drug trandolapril has been corrected in Figure 4c. The conclusions of the work have not been affected by this correction. (Figure present).

Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers (2021)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., …Wildman, R. D. (2021). Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers. ACS Applied Materials and Interfaces, 13(33), 38969-38978. https://doi.org/10.1021/acsami.1c07850

Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. Phase separation has been exploited to fabricate intricate microstructures in many fields including cell biology, tissue... Read More about Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers.

Poly (glycerol adipate) (PGA) backbone modifications with a library of functional diols: Chemical and physical effects (2021)
Journal Article
Jacob, P. L., Ruiz Cantu, L. A., Pearce, A. K., He, Y., Lentz, J. C., Moore, J. C., …Taresco, V. (2021). Poly (glycerol adipate) (PGA) backbone modifications with a library of functional diols: Chemical and physical effects. Polymer, 228, Article 123912. https://doi.org/10.1016/j.polymer.2021.123912

Enzymatically synthesised poly(glycerol adipate) (PGA) has shown a palette of key desirable properties required for a biomaterial to be considered a ‘versatile polymeric tool’ in the field of drug delivery. PGA and its variations can self-assemble in... Read More about Poly (glycerol adipate) (PGA) backbone modifications with a library of functional diols: Chemical and physical effects.

Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites (2020)
Journal Article
Eltaher, H. M., Abukunna, F. E., Ruiz-Cantu, L., Stone, Z., Yang, J., & Dixon, J. E. (2020). Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites. Acta Biomaterialia, 113, 339-349. https://doi.org/10.1016/j.actbio.2020.06.012

© 2020 Combating necrosis, by supplying nutrients and removing waste, presents the major challenge for engineering large three-dimensional (3D) tissues. Previous elegant work used 3D printing with carbohydrate glass as a cytocompatible sacrificial te... Read More about Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites.

A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants (2020)
Journal Article
He, Y., Foralosso, R., Ferraz Trindade, G., Ilchev, A., Cantu, L. R., Clark, E., …Wildman, R. D. (2020). A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants. Advanced Therapeutics, 3(6), Article 1900187. https://doi.org/10.1002/adtp.201900187

We propose a strategy for creating tuneable 3D printed drug delivery devices. 3D printing offers the opportunity for improved compliance and patient treatment outcomes through personalisation, but bottlenecks include finding formulations that provide... Read More about A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants.

Multi-material 3D bioprinting of porous constructs for cartilage regeneration (2019)
Journal Article
Ruiz-Cantu, L., Gleadall, A., Faris, C., Segal, J., Shakesheff, K., & Yang, J. (2020). Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Materials Science and Engineering: C, 109, https://doi.org/10.1016/j.msec.2019.110578

© 2020 Elsevier B.V. The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilag... Read More about Multi-material 3D bioprinting of porous constructs for cartilage regeneration.

High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations (2019)
Journal Article
Zhou, Z., Ruiz Cantu, L., Chen, X., Alexander, M. R., Roberts, C. J., Hague, R., …Wildman, R. (2019). High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations. Additive Manufacturing, 29, Article 100792. https://doi.org/10.1016/j.addma.2019.100792

Inkjet printing has been used as an Additive Manufacturing (AM) method to fabricate three-dimensional (3D) structures. However, a lack of materials suitable for inkjet printing poses one of the key challenges that impedes industry from fully adopting... Read More about High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations.

Synthesis of methacrylate-terminated block copolymers with reduced transesterification by controlled ring-opening polymerization (2018)
Journal Article
Ruiz-Cantu, L. A., Pearce, A. K., Burroughs, L., Bennett, T. M., Vasey, C. E., Wildman, R., …Taresco, V. (2019). Synthesis of methacrylate-terminated block copolymers with reduced transesterification by controlled ring-opening polymerization. Macromolecular Chemistry and Physics, 220(2), Article 1800459. https://doi.org/10.1002/macp.201800459

This work presents a robust method to achieve the synthesis of low molecular weight polyesters 26 via ring-opening polymerization (ROP) initiated by 2-hydroxyethyl-methacrylate (HEMA) 27 when using triazabicyclodecene (TBD) as catalyst. The effect th... Read More about Synthesis of methacrylate-terminated block copolymers with reduced transesterification by controlled ring-opening polymerization.

Nanoscale Coatings for Ultralow Dose BMP-2-Driven Regeneration of Critical-Sized Bone Defects (2018)
Journal Article
Cheng, Z. A., Alba-Perez, A., Gonzalez-Garcia, C., Donnelly, H., Llopis-Hernandez, V., Jayawarna, V., …Salmeron-Sanchez, M. (2019). Nanoscale Coatings for Ultralow Dose BMP-2-Driven Regeneration of Critical-Sized Bone Defects. Advanced Science, 6(2), Article 1800361. https://doi.org/10.1002/advs.201800361

© 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim While new biomaterials for regenerative therapies are being reported in the literature, clinical translation is slow. Some existing regenerative approaches rely on high dos... Read More about Nanoscale Coatings for Ultralow Dose BMP-2-Driven Regeneration of Critical-Sized Bone Defects.

Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery (2018)
Journal Article
Louzao, I., Koch, B., Taresco, V., Ruiz Cantu, L., Irvine, D. J., Roberts, C. J., …Alexander, M. R. (in press). Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery. ACS Applied Materials and Interfaces, 10(8), https://doi.org/10.1021/acsami.7b15677

A robust discovery methodology is presented to identify novel biomaterials suitable for 3D printing. Currently the application of Additive Manufacturing is limited by the availability of functional inks, especially in the area of biomaterials-this me... Read More about Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery.

Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds (2016)
Journal Article
Liao, Z., Sinjab, F., Nommeots-Nomm, A., Jones, J., Ruiz-Cantu, L., Yang, J., …Notingher, I. (2017). Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds. Analytical Chemistry, 89(1), 847-853. https://doi.org/10.1021/acs.analchem.6b03785

We investigated the feasibility of using spatially-offset Raman spectroscopy (SORS) for non-destructive characterisation of bone tissue engineering scaffolds. The deep regions of these scaffolds, or scaffolds implanted subcutaneously in live animals,... Read More about Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds.

Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing (2016)
Journal Article
Ruiz-Cantu, L., Gleadall, A., Faris, C., Segal, J., Shakesheff, K., & Yang, J. (2016). Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing. Biofabrication, 8(1), Article 015016. https://doi.org/10.1088/1758-5090/8/1/015016

© 2016 IOP Publishing Ltd. 3D printing is of great interest for tissue engineering scaffolds due to the ability to form complex geometries and control internal structures, including porosity and pore size. The porous structure of scaffolds plays an i... Read More about Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.