Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Comparison of Fourier optics-based methods for modeling coherence scanning interferometry (2024)
Journal Article
Hooshmand, H., Pahl, T., de Groot, P. J., Lehmann, P., Pappas, A., Su, R., …Piano, S. (2024). Comparison of Fourier optics-based methods for modeling coherence scanning interferometry. Optical Engineering, 63(04), https://doi.org/10.1117/1.oe.63.4.044102

Coherence scanning interferometry (CSI) is a widely used optical method for surface topography measurement of industrial and biomedical surfaces. The operation of CSI can be modeled using approximate physics-based approaches with minimal computationa... Read More about Comparison of Fourier optics-based methods for modeling coherence scanning interferometry.

Virtual optical instrument for uncertainty evaluation in surface topography measurement (2023)
Presentation / Conference
Hooshmand, H., Pappas, A., Su, R., Leach, R., & Piano, S. (2023, September). Virtual optical instrument for uncertainty evaluation in surface topography measurement. Paper presented at 15th International Symposium on Measurement Technology and Intelligent Instruments (ISMTII 2023), Seoul, South Korea

Uncertainty evaluation for optical techniques measuring surfaces with complex topography is an open issue in industrial metrology. The ISO standard framework attempts to simplify calibration and uncertainty evaluation by introducing a fixed set of me... Read More about Virtual optical instrument for uncertainty evaluation in surface topography measurement.

Dynamic surface displacement measurement using carrier optical vortex interferometer: A numerical study (2023)
Journal Article
Dong, J., Hooshmand, H., Liu, M., & Piano, S. (2023). Dynamic surface displacement measurement using carrier optical vortex interferometer: A numerical study. Optics and Lasers in Engineering, 171, Article 107824. https://doi.org/10.1016/j.optlaseng.2023.107824

The measurement of dynamic surface displacement is crucial in understanding mechanical and thermophysical dynamics at nanometre to micrometre-scale. Interferometers using optical vortices are gaining attention due to their ability to demodulate fring... Read More about Dynamic surface displacement measurement using carrier optical vortex interferometer: A numerical study.

Comparison of approximate methods for modelling coherence scanning interferometry (2023)
Journal Article
Hooshmand, H., Pahl, T., de Groot, P. J., Lehmann, P., Pappas, A., Su, R., …Piano, S. (2023). Comparison of approximate methods for modelling coherence scanning interferometry. Proceedings of SPIE, 12619, https://doi.org/10.1117/12.2673657

Coherence scanning interferometry (CSI) is a widely used optical method for surface topography measurement of industrial and biomedical surfaces. The operation of CSI can be modelled using approximate physics-based approaches with minimal computation... Read More about Comparison of approximate methods for modelling coherence scanning interferometry.

Comparison of coherence scanning interferometry, focus variation and confocal microscopy for surface topography measurement (2023)
Conference Proceeding
Hooshmand, H., Liu, M., Pappas, A., Thompson, A., Leach, R., & Piano, S. (2023). Comparison of coherence scanning interferometry, focus variation and confocal microscopy for surface topography measurement.

The most common optical technologies for surface topography measurement are coherence scanning interferometry (CSI), focus variation microscopy (FV) and imaging confocal microscopy (CM). Due to the benefits and drawbacks of each, these instruments ar... Read More about Comparison of coherence scanning interferometry, focus variation and confocal microscopy for surface topography measurement.

Quantitative investigation of the validity conditions for the Beckmann-Kirchhoff scattering model (2022)
Journal Article
Hooshmand, H., Liu, M., Leach, R., & Piano, S. (2022). Quantitative investigation of the validity conditions for the Beckmann-Kirchhoff scattering model. Optical Engineering, 61(12), Article 124113. https://doi.org/10.1117/1.OE.61.12.124113

Approximate and rigorous methods are widely used to model light scattering from a surface. The boundary element method (BEM) is a rigorous model that accounts for polarization and multiple scattering effects. BEM is suitable to model the scattered li... Read More about Quantitative investigation of the validity conditions for the Beckmann-Kirchhoff scattering model.

Quantifying the validity conditions of the Beckmann-Kirchhoff scattering model (2022)
Conference Proceeding
Hooshmand, H., Liu, M., Leach, R., & Piano, S. (2022). Quantifying the validity conditions of the Beckmann-Kirchhoff scattering model. In D. Kim, H. Choi, & H. Ottevaere (Eds.), Proc. SPIE 12221, Optical Manufacturing and Testing XIV. https://doi.org/10.1117/12.2639003

Approximate and rigorous methods are widely used to model light scattering from a surface. The boundary element method (BEM) is a rigorous model that accounts for polarisation and multiple scattering effects. BEM is suitable to model the scattered li... Read More about Quantifying the validity conditions of the Beckmann-Kirchhoff scattering model.