Skip to main content

Research Repository

Advanced Search

All Outputs (173)

Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine (2019)
Journal Article
Wang, T., Zhang, Y., Wen, F., Gerada, C., Liu, G., Rui, D., & Zerun, W. (2019). Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine. IET Electric Power Applications, 13(6), 812-818. https://doi.org/10.1049/iet-epa.2018.5725

© The Institution of Engineering and Technology 2019. In order to accurately estimate the temperature rise for high-power high-speed permanent magnet machines (HSPMMs), a novel temperature calculation method considering the non-linear variation of ma... Read More about Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine.

A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives (2019)
Journal Article
Xu, Z. J., Zhang, T., Bao, Y., Zhang, H., & Gerada, C. (2020). A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives. IEEE Transactions on Power Electronics, 35(1), 733-743. https://doi.org/10.1109/tpel.2019.2914119

© 1986-2012 IEEE. Sensorless machine drives in vehicle traction frequently experience rapidly-changing load disturbance and demand fast speed dynamics. Without gain-scheduling or compensation, conventional quadrature phase-locked-loop (Q-PLL) is unab... Read More about A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives.

An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation (2019)
Journal Article
Gerada, C., Galassini, A., Degano, M., Kang, J., & Wang, S. (2020). An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation. IEEE Transactions on Industrial Electronics, 67(4), 2630-2641 . https://doi.org/10.1109/TIE.2019.2912766

This paper deals with the high accurate current set-points solution for Interior Permanent-Magnet Synchronous Motors (IPMSM) in wide-speed range applications. Considering voltage and current constraints, the operating regions can be divided into Maxi... Read More about An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation.

Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines (2019)
Journal Article
Zeng, Z., Shen, Y., Lu, Q., Gerada, D., Wu, B., Huang, X., & Gerada, C. (2019). Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. IEEE Transactions on Magnetics, 55(6), 1-7. https://doi.org/10.1109/tmag.2019.2908250

By developing a simple permeance-magnetomotive force (MMF) model of switched-flux permanent magnet (SFPM) machines, the air-gap flux density produced by both PMs and armature current can be derived, in which harmonics with the same order and rotation... Read More about Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines.

Effective Thermal Conductivity Calculation and Measurement of Litz Wire based on the Porous Metal Materials Structure (2019)
Journal Article
Liu, X., Gerada, D., Xu, Z., Corfield, M., Gerada, C., & Yu, H. (2020). Effective Thermal Conductivity Calculation and Measurement of Litz Wire based on the Porous Metal Materials Structure. IEEE Transactions on Industrial Electronics, 67(4), 2667-2677. https://doi.org/10.1109/tie.2019.2910031

Litz wires are employed in high-frequency electrical machines due to their advantages of reducing the ac losses, including minimizing the skin effect and the proximity effect. In order to improve the reliability of such machines, and enable accurate... Read More about Effective Thermal Conductivity Calculation and Measurement of Litz Wire based on the Porous Metal Materials Structure.

Numerical investigations of convective phenomena of oil impingement on end-windings (2019)
Journal Article
Connor, P. H., La Rocca, A., Xu, Z., Eastwick, C. N., Pickering, S. J., & Gerada, C. (2019). Numerical investigations of convective phenomena of oil impingement on end-windings. Journal of Engineering, 2019(17), 4022-4026. https://doi.org/10.1049/joe.2018.8027

A novel experimental rig for analysing intensive liquid cooling of highly power-dense electrical machine components has been developed. Coupled fluid flow and heat transfer have been modelled, using computational fluid dynamics (CFD), to inform the d... Read More about Numerical investigations of convective phenomena of oil impingement on end-windings.

Novel Motor-Shaped Rotational Inductor for Motor Drive Applications (2019)
Journal Article
Odhano, S., Khowja, M. R., Gerada, C., Vakil, G., Abebe, R., Odhano, S. A., …Wheeler, P. (2020). Novel Motor-Shaped Rotational Inductor for Motor Drive Applications. IEEE Transactions on Industrial Electronics, 67(3), 1844-1854. https://doi.org/10.1109/tie.2019.2907512

This paper presents a validation of the novel motor-shaped rotational inductor. To validate the concept, 12 slots 2 poles rotational inductor is tested at different supply frequencies and rotor speeds. Experimental results have shown that the iron lo... Read More about Novel Motor-Shaped Rotational Inductor for Motor Drive Applications.

Considerations on the Development of an Electric Drive for a Secondary Flight Control Electromechanical Actuator (2019)
Journal Article
Giangrande, P., Galassini, A., Papadopoulos, S., Al-Timimy, A., Calzo, G. L., Degano, M., …Galea, M. (2019). Considerations on the Development of an Electric Drive for a Secondary Flight Control Electromechanical Actuator. IEEE Transactions on Industry Applications, 55(4), 3544-3554. https://doi.org/10.1109/tia.2019.2907231

The more electric aircraft concept aims to improve the fuel consumption, the weight, and both the maintenance and operating costs of the aircraft, by promoting the use of electric power in actuation systems. According to this scenario, electromechani... Read More about Considerations on the Development of an Electric Drive for a Secondary Flight Control Electromechanical Actuator.

Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation (2019)
Journal Article
Chowdhury, S., Wheeler, P., Huang, Z., Rivera, M., & Gerada, C. (2019). Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation. IET Power Electronics, 12(3), 450-457. https://doi.org/10.1049/iet-pel.2018.5395

This study proposes a modified modulated model predictive control (MMPC) scheme to control an open-end winding induction motor drive using an asymmetric source dual inverter with one floating bridge. The control algorithm uses a modulation algorithm... Read More about Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation.

High Torque Density Torque Motor With Hybrid Magnetization Pole Arrays for Jet Pipe Servo Valve (2019)
Journal Article
Zhang, Q., Yan, L., Duan, Z., Jiao, Z., Gerada, C., & Chen, I. (2020). High Torque Density Torque Motor With Hybrid Magnetization Pole Arrays for Jet Pipe Servo Valve. IEEE Transactions on Industrial Electronics, 67(3), 2133-2142. https://doi.org/10.1109/tie.2019.2903761

Torque motor is one key component that directly influences the dynamic performance of jet pipe servo valve in aircraft. In this paper, a novel torque motor with hybrid-magnetization pole arrays is proposed. By changing the magnetization patterns of p... Read More about High Torque Density Torque Motor With Hybrid Magnetization Pole Arrays for Jet Pipe Servo Valve.

Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry (2019)
Journal Article
La Rocca, S., Pickering, S. J., Eastwick, C. N., Gerada, C., & Rönnberg, K. (2019). Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry. Journal of Engineering, 2019(17), 3831-3835. https://doi.org/10.1049/joe.2018.8026

Here, a typical small low-voltage totally enclosed fan-cooled (TEFC) motor (output power ∼10 kW) has been studied using computational fluid dynamics. The complexity of the end-winding geometries, often consisting of several insulated copper strands b... Read More about Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry.

The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines (2019)
Journal Article
Zhang, H., Hua, W., Hu, M., Gerada, D., & Gerada, C. (2019). The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines. IEEE Transactions on Magnetics, 55(7), Article 8104205. https://doi.org/10.1109/tmag.2018.2886686

The main purpose of this paper is to investigate the influence of winding location on back electromotive force (EMF) and armature inductance in flux-switching permanent-magnet (FSPM) machines. To obtain an analytical solution, a double-stator-pitch m... Read More about The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines.

Simplified Damper Cage Circuital Model and Fast Analytical–Numerical Approach for the Analysis of Synchronous Generators (2018)
Journal Article
Nuzzo, S., Bolognesi, P., Gerada, C., & Galea, M. (2019). Simplified Damper Cage Circuital Model and Fast Analytical–Numerical Approach for the Analysis of Synchronous Generators. IEEE Transactions on Industrial Electronics, 66(11), 8361-8371. https://doi.org/10.1109/tie.2018.2885737

The long and enduring history of utilization of the wound-field synchronous generator in a large number of applications makes it one of the most known and consolidated electrical machine technologies. Thus, its design, modeling, and analysis processe... Read More about Simplified Damper Cage Circuital Model and Fast Analytical–Numerical Approach for the Analysis of Synchronous Generators.

A Novel Thermal Network Model Used for Temperature Calculation and Analysis on Brushless Doubly-Fed Generator With Winding Encapsulating Structure (2018)
Journal Article
Jiang, X., Zhang, Y., Jin, S., Zhang, F., & Gerada, C. (2019). A Novel Thermal Network Model Used for Temperature Calculation and Analysis on Brushless Doubly-Fed Generator With Winding Encapsulating Structure. IEEE Transactions on Industry Applications, 55(2), 1473-1483. https://doi.org/10.1109/tia.2018.2883542

© 1972-2012 IEEE. In recent years, magnetic-barrier rotor has been put forward for brushless doubly-fed generator (BDFG) application owing to its desirable performance, such as high power density and strong magnetic coupling ability. However, it also... Read More about A Novel Thermal Network Model Used for Temperature Calculation and Analysis on Brushless Doubly-Fed Generator With Winding Encapsulating Structure.

Consideration on Eddy Current Reduction Techniques for Solid Materials Used in Unconventional Magnetic Circuits (2018)
Journal Article
Mohammed, A. M., Galea, M., Cox, T., & Gerada, C. (2019). Consideration on Eddy Current Reduction Techniques for Solid Materials Used in Unconventional Magnetic Circuits. IEEE Transactions on Industrial Electronics, 66(6), 4870-4879. https://doi.org/10.1109/TIE.2018.2875641

The use of solid materials in tubular, linear machines has significant manufacturing benefits, as this removes the need for an axially laminated stator. However, this comes at the cost of extra eddy current losses. In this paper, a detailed analysis... Read More about Consideration on Eddy Current Reduction Techniques for Solid Materials Used in Unconventional Magnetic Circuits.

An Integrated Method for Three-Phase AC Excitation and High-Frequency Voltage Signal Injection for Sensorless Starting of Aircraft Starter/Generator (2018)
Journal Article
Wei, J., Xu, H., Zhou, B., Zhang, Z., & Gerada, C. (2019). An Integrated Method for Three-Phase AC Excitation and High-Frequency Voltage Signal Injection for Sensorless Starting of Aircraft Starter/Generator. IEEE Transactions on Industrial Electronics, 66(7), 5611-5622. https://doi.org/10.1109/tie.2018.2871795

© 1982-2012 IEEE. This paper proposes an integrated method of three-phase ac excitation and high-frequency voltage signal injection (HFVSI) for sensorless controlled starting of brushless synchronous machines (BSM) used as starter/generator in variab... Read More about An Integrated Method for Three-Phase AC Excitation and High-Frequency Voltage Signal Injection for Sensorless Starting of Aircraft Starter/Generator.

Thermal analysis of fault-tolerant electrical machines for aerospace actuators (2018)
Journal Article
Madonna, V., Giangrande, P., Galea, M., & Gerada, C. (2019). Thermal analysis of fault-tolerant electrical machines for aerospace actuators. IET Electric Power Applications, 13(7), 843 – 852. https://doi.org/10.1049/iet-epa.2018.5153

For safety critical applications, electrical machines need to satisfy several constraints, in order to be considered fault-tolerant. In fact, if specific design choices and appropriate control strategies are embraced, fault-tolerant machines can oper... Read More about Thermal analysis of fault-tolerant electrical machines for aerospace actuators.

Improved thermal management and analysis for stator end-windings of electrical machines (2018)
Journal Article
Madonna, V., Walker, A., Giangrande, P., Serra, G., Gerada, C., & Galea, M. (2019). Improved thermal management and analysis for stator end-windings of electrical machines. IEEE Transactions on Industrial Electronics, 66(7), 5057-5069. https://doi.org/10.1109/tie.2018.2868288

In electrical machine design, thermal management plays a key role in improving performance and reducing size. End-windings are commonly identified as the machine hot-spot. Hence, lowering and predicting end-windings temperature are crucial tasks in t... Read More about Improved thermal management and analysis for stator end-windings of electrical machines.

Enhanced power sharing transient with droop controllers for multi-three-phase synchronous electrical machines (2018)
Journal Article
Galassini, A., Costabeber, A., Degano, M., Gerada, C., Tessarolo, A., & Menis, R. (2019). Enhanced power sharing transient with droop controllers for multi-three-phase synchronous electrical machines. IEEE Transactions on Industrial Electronics, 66(7), 5600-5610. https://doi.org/10.1109/tie.2018.2868029

This paper presents a droop-based dis- tributed control strategy for multi-three-phase machines that provides augmented controllability during power shar- ing transients. The proposed strategy is able to mitigate the mutual interactions among differe... Read More about Enhanced power sharing transient with droop controllers for multi-three-phase synchronous electrical machines.