Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS (2023)
Journal Article
Khateb, H., Hook, A. L., Kern, S., Watts, J. A., Singh, S., Jackson, D., …Alexander, M. R. (2023). Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS. Biointerphases, 18(3), Article 031007. https://doi.org/10.1116/6.0002604

Secondary ion mass spectrometry (SIMS) offers advantages over both liquid extraction mass spectrometry and matrix assisted laser desorption mass spectrometry in that it provides the direct in situ analysis of molecules and has the potential to preser... Read More about Identification of Pseudomonas aeruginosa exopolysaccharide Psl in biofilms using 3D OrbiSIMS.

Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-?-treated macrophages to pseudomonas aeruginosa infection (2015)
Journal Article
Singh, S., Barr, H. L., Liu, Y., Robins, A., Heeb, S., Williams, P., …Martinez-Pomares, L. (2015). Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to pseudomonas aeruginosa infection. PLoS ONE, 10(2), Article e0117447. https://doi.org/10.1371/journal.pone.0117447

Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic... Read More about Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-?-treated macrophages to pseudomonas aeruginosa infection.

Combinatorial discovery of polymers resistant to bacterial attachment (2012)
Journal Article
Hook, A. L., Chang, C., Yang, J., Luckett, J., Cockayne, A., Atkinson, S., …Alexander, M. R. (2012). Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology, 30(9), 868-875. https://doi.org/10.1038/nbt.2316

Bacterial attachment and subsequent biofilm formation pose key challenges to the optimal performance of medical devices. In this study, we determined the attachment of selected bacterial species to hundreds of polymeric materials in a high-throughput... Read More about Combinatorial discovery of polymers resistant to bacterial attachment.