Skip to main content

Research Repository

Advanced Search

All Outputs (6)

RAPID INTRAOPERATIVE GENETIC AUGMENTATION OF AUTOGRAFTS FOR RECONSTRUCTIVE SURGERY OF SEVERE TRAUMA (2022)
Journal Article
Dixon, J., Thi Mai, T., McLaren, J., Ollivere, B., Scammell, B., & Eltaher, H. (2022). RAPID INTRAOPERATIVE GENETIC AUGMENTATION OF AUTOGRAFTS FOR RECONSTRUCTIVE SURGERY OF SEVERE TRAUMA. Tissue Engineering: Parts A, B, and C, 28(S1),

Survivors with severe tissue injury have unmet clinical needs for better bone and soft tissue regeneration. Specifically they have progressive tissue loss due to inflammation, necrosis, infection and the development of critical size bone defects is a... Read More about RAPID INTRAOPERATIVE GENETIC AUGMENTATION OF AUTOGRAFTS FOR RECONSTRUCTIVE SURGERY OF SEVERE TRAUMA.

Short-Term Evaluation of Cellular Fate in an Ovine Bone Formation Model (2021)
Journal Article
Markides, H., Foster, N. C., McLaren, J. S., Hopkins, T., Black, C., Oreffo, R. O. C., …El Haj, A. J. (2021). Short-Term Evaluation of Cellular Fate in an Ovine Bone Formation Model. Cells, 10(7), Article 1776. https://doi.org/10.3390/cells10071776

The ovine critical-sized defect model provides a robust preclinical model for testing tissue-engineered constructs for use in the treatment of non-union bone fractures and severe trauma. A critical question in cell-based therapies is understanding th... Read More about Short-Term Evaluation of Cellular Fate in an Ovine Bone Formation Model.

Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering (2020)
Journal Article
Amer, M. H., Alvarez-Paino, M., McLaren, J., Pappalardo, F., Trujillo, S., Wong, J. Q., …Rose, F. R. (2021). Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering. Biomaterials, 266, Article 120450. https://doi.org/10.1016/j.biomaterials.2020.120450

© 2020 The Authors Mesenchymal stem cells are the focus of intense research in bone development and regeneration. The potential of microparticles as modulating moieties of osteogenic response by utilizing their architectural features is demonstrated... Read More about Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering.

Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples (2019)
Journal Article
Dooley, M., Prasopthum, A., Liao, Z., Sinjab, F., Mclaren, J., Rose, F. R. A. J., …Notingher, I. (2019). Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples. Biomedical Optics Express, 10(4), 1678-1690. https://doi.org/10.1364/BOE.10.001678

Using phantom samples, we investigated the feasibility of spatially-offset Raman spectroscopy (SORS) as a tool for monitoring non-invasively the mineralization of bone tissue engineering scaffold in-vivo. The phantom samples consisted of 3D-printed s... Read More about Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples.

Translation of remote control regenerative technologies for bone repair (2018)
Journal Article
Markides, H., McLaren, J. S., Telling, N. D., Alom, N., Al-Mutheffer, E. A., Oreffo, R., …El-Haj, A. (2018). Translation of remote control regenerative technologies for bone repair. npj Regenerative Medicine, 3(9), 1-12. https://doi.org/10.1038/s41536-018-0048-1

The role of biomechanical stimuli, or mechanotransduction, in normal bone homeostasis and repair is understood to facilitate effective osteogenesis of mesenchymal stem cells (MSCs) in vitro. Mechanotransduction has been integrated into a multitude of... Read More about Translation of remote control regenerative technologies for bone repair.

Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures (2017)
Journal Article
Kumar, D., Workman, V., O'Brien, M. C., McLaren, J. S., White, L. J., Ragunath, K., …Rose, F. R. (2017). Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures. Advanced Functional Materials, 27(38), Article 1702424. https://doi.org/10.1002/adfm.201702424

Endoscopic treatment of Barrett’s oesophagus often leads to further damage of healthy tissue causing fibrotic tissue formation termed as strictures. This study shows that synthetic, self-assembling peptide hydrogels (PeptiGelDesign) support the activ... Read More about Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures.