Skip to main content

Research Repository

Advanced Search

All Outputs (72)

Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices (2021)
Journal Article
He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., …Wildman, R. D. (2022). Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials, 281, Article 121350. https://doi.org/10.1016/j.biomaterials.2021.121350

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured throu... Read More about Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices.

Immune-instructive materials as new tools for immunotherapy (2021)
Journal Article
Fisher, L. E., Kämmerling, L., Alexander, M. R., & Ghaemmaghami, A. M. (2022). Immune-instructive materials as new tools for immunotherapy. Current Opinion in Biotechnology, 74, 194-203. https://doi.org/10.1016/j.copbio.2021.11.005

Immune instructive materials, are materials with the ability to modulate or mimic the function of immune cells, provide exciting opportunities for developing new therapies in many areas including medical devices, chronic inflammation, cancer, and aut... Read More about Immune-instructive materials as new tools for immunotherapy.

Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms (2021)
Journal Article
Lion, A., Wildman, R. D., Alexander, M. R., & Roberts, C. J. (2021). Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms. Pharmaceutics, 13(10), Article 1679. https://doi.org/10.3390/pharmaceutics13101679

One of the most striking characteristics of 3D printing is its capability to produce multi-material objects with complex geometry. In pharmaceutics this translates to the possibility of dosage forms with multi-drug loading, tailored dosing and releas... Read More about Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms.

Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods (2021)
Journal Article
Cuzzucoli Crucitti, V., Contreas, L., Taresco, V., Howard, S. C., Dundas, A. A., Limo, M. J., …Irvine, D. J. (2021). Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods. ACS Applied Materials and Interfaces, 13(36), 43290-43300. https://doi.org/10.1021/acsami.1c08662

We report the first successful combination of three distinct high-throughput techniques to deliver the accelerated design, synthesis, and property screening of a library of novel, bio-instructive, polymeric, comb-graft surfactants. These three-dimens... Read More about Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods.

Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants (2021)
Journal Article
Henshaw, C. A., Dundas, A. A., Cuzzucoli Crucitti, V., Alexander, M. R., Wildman, R., Rose, F. R. A. J., …Williams, P. M. (2021). Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants. Molecules, 26(11), Article 3302. https://doi.org/10.3390/molecules26113302

Droplet microfluidics can produce highly tailored microparticles whilst retaining monodispersity. However, these systems often require lengthy optimisation, commonly based on a trial-and-error approach, particularly when using bio-instructive, polyme... Read More about Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants.

Sequential Orbitrap Secondary Ion Mass Spectrometry and Liquid Extraction Surface Analysis-Tandem Mass Spectrometry-Based Metabolomics for Prediction of Brain Tumor Relapse from Sample-Limited Primary Tissue Archives (2021)
Journal Article
Meurs, J., Scurr, D. J., Lourdusamy, A., Storer, L. C., Grundy, R. G., Alexander, M. R., …Kim, D.-H. (2021). Sequential Orbitrap Secondary Ion Mass Spectrometry and Liquid Extraction Surface Analysis-Tandem Mass Spectrometry-Based Metabolomics for Prediction of Brain Tumor Relapse from Sample-Limited Primary Tissue Archives. Analytical Chemistry, 93(18), 6947-6954. https://doi.org/10.1021/acs.analchem.0c05087

We present here a novel surface mass spectrometry strategy to perform untargeted metabolite profiling of formalin-fixed paraffin-embedded pediatric ependymoma archives. Sequential Orbitrap secondary ion mass spectrometry (3D OrbiSIMS) and liquid extr... Read More about Sequential Orbitrap Secondary Ion Mass Spectrometry and Liquid Extraction Surface Analysis-Tandem Mass Spectrometry-Based Metabolomics for Prediction of Brain Tumor Relapse from Sample-Limited Primary Tissue Archives.

AbaM Regulates Quorum Sensing, Biofilm Formation and Virulence in Acinetobacter baumannii (2021)
Journal Article
López-Martín, M., Dubern, J.-F., Alexander, M. R., & Williams, P. (2021). AbaM Regulates Quorum Sensing, Biofilm Formation and Virulence in Acinetobacter baumannii. Journal of Bacteriology, 203(8), Article e00635-20. https://doi.org/10.1128/jb.00635-20

Acinetobacter baumannii possesses a single divergent luxR/luxI-type quorum sensing (QS) locus named abaR/abaI. This locus also contains a third gene located between abaR and abaI which we term abaM that codes for an uncharacterized member of the RsaM... Read More about AbaM Regulates Quorum Sensing, Biofilm Formation and Virulence in Acinetobacter baumannii.

Discovery of a Novel Polymer for Xeno-Free, Long-Term Culture of Human Pluripotent Stem Cell Expansion (2020)
Journal Article
Nasir, A., Thorpe, J., Burroughs, L., Meurs, J., Pijuan‐Galito, S., Irvine, D. J., …Denning, C. (2020). Discovery of a Novel Polymer for Xeno-Free, Long-Term Culture of Human Pluripotent Stem Cell Expansion. Advanced Healthcare Materials, 10(6), Article 2001448. https://doi.org/10.1002/adhm.202001448

Human pluripotent stem cells (hPSCs) can be expanded and differentiated in vitro into almost any adult tissue cell type, and thus have great potential as a source for cell therapies with biomedical application. In this study, a fully-defined polymer... Read More about Discovery of a Novel Polymer for Xeno-Free, Long-Term Culture of Human Pluripotent Stem Cell Expansion.

Polymer microarrays rapidly identify competitive adsorbents of virus-like particles (2020)
Journal Article
Blok, A. J., Gurnani, P., Xenopoulos, A., Burroughs, L., Duncan, J., Urbanowicz, R. A., …Alexander, M. R. (2020). Polymer microarrays rapidly identify competitive adsorbents of virus-like particles. Biointerphases, 15(6), Article 061005. https://doi.org/10.1116/6.0000586

The emergence of SARS-CoV-2 highlights the global need for platform technologies to enable the rapid development of diagnostics, vaccines, treatments, and personal protective equipment (PPE). However, many current technologies require the detailed me... Read More about Polymer microarrays rapidly identify competitive adsorbents of virus-like particles.

All Surfaces Are Not Equal in Contact Transmission of SARS-CoV-2 (2020)
Journal Article
Xue, X., Ball, J. K., Alexander, C., & Alexander, M. R. (2020). All Surfaces Are Not Equal in Contact Transmission of SARS-CoV-2. Matter, 3(5), 1433-1441. https://doi.org/10.1016/j.matt.2020.10.006

© 2020 Elsevier Inc. The world faces a severe and acute public health emergency due to the ongoing coronavirus disease 2019 (COVID-19) global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Healthcare workers are... Read More about All Surfaces Are Not Equal in Contact Transmission of SARS-CoV-2.

Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties (2020)
Journal Article
Alobaid, M. A., Richards, S., Alexander, M. R., Gibson, M. I., & Ghaemmaghami, A. M. (2020). Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties. Materials Today Bio, 8, Article 100080. https://doi.org/10.1016/j.mtbio.2020.100080

© 2020 The Authors New strategies for immune modulation have shown real promise in regenerative medicine as well as the fight against autoimmune diseases, allergies, and cancer. Dendritic cells (DCs) are gatekeepers of the immune system and their abi... Read More about Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties.

Discovery of hemocompatible bacterial biofilm-resistant copolymers (2020)
Journal Article
Singh, T., Hook, A. L., Luckett, J., Maitz, M. F., Sperling, C., Werner, C., …Alexander, M. R. (2020). Discovery of hemocompatible bacterial biofilm-resistant copolymers. Biomaterials, 260, Article 120312. https://doi.org/10.1016/j.biomaterials.2020.120312

© 2020 The Authors Blood-contacting medical devices play an important role within healthcare and are required to be biocompatible, hemocompatible and resistant to microbial colonization. Here we describe a high throughput screen for copolymers with t... Read More about Discovery of hemocompatible bacterial biofilm-resistant copolymers.

Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation (2020)
Preprint / Working Paper
He, Y., Begines, B., Luckett, J., Dubern, J., Hook, A., Prina, E., …Wildman, R. D. Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation

We demonstrate the formulation of advanced functional 3D printing inks that prevent the formation of bacterial biofilms in vivo. Starting from polymer libraries, we show that a biofilm resistant object can be 3D printed with the potential for shape a... Read More about Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation.

Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation (2020)
Journal Article
Vassey, M. J., Figueredo, G. P., Scurr, D. J., Vasilevich, A. S., Vermeulen, S., Carlier, A., …Alexander, M. R. (2020). Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation. Advanced Science, 7(11), Article 1903392. https://doi.org/10.1002/advs.201903392

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Macrophages play a central role in orchestrating immune responses to foreign materials, which are often responsible for the failure of implanted medical devices. Material t... Read More about Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation.

ToF-SIMS and Machine Learning for Single-Pixel Molecular Discrimination of an Acrylate Polymer Microarray (2020)
Journal Article
Gardner, W., Hook, A. L., Alexander, M. R., Ballabio, D., Cutts, S. M., Muir, B. W., & Pigram, P. J. (2020). ToF-SIMS and Machine Learning for Single-Pixel Molecular Discrimination of an Acrylate Polymer Microarray. Analytical Chemistry, 92(9), 6587-6597. https://doi.org/10.1021/acs.analchem.0c00349

© 2020 American Chemical Society. Combinatorial approaches to materials discovery offer promising potential for the rapid development of novel polymer systems. Polymer microarrays enable the high-throughput comparison of material physical and chemica... Read More about ToF-SIMS and Machine Learning for Single-Pixel Molecular Discrimination of an Acrylate Polymer Microarray.

Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing (2019)
Journal Article
Clark, E. A., Alexander, M. R., Irvine, D. J., Roberts, C. J., Wallace, M. J., Yoo, J., & Wildman, R. D. (2020). Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing. International Journal of Pharmaceutics, 578, Article 118805. https://doi.org/10.1016/j.ijpharm.2019.118805

© 2019 In this study, we investigate the viability of three-dimensional (3D) inkjet printing with UV curing to produce solid dosage forms containing a known poorly soluble drug, carvedilol. The formulation consists of 10 wt% carvedilol, Irgacure 2959... Read More about Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing.

Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation (2019)
Journal Article
Dundas, A. A., Sanni, O., Dubern, J.-F., Dimitrakis, G., Hook, A. L., Irvine, D. J., …Alexander, M. R. (2019). Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation. Advanced Materials, 31(49), Article 1903513. https://doi.org/10.1002/adma.201903513

ynthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical‐device‐centered infections. The incidence rate for catheter‐associated urinary tract infections is between 3% and 7% for each day o... Read More about Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation.

Toward Interpretable Machine Learning Models for Materials Discovery (2019)
Journal Article
Mikulskis, P., Alexander, M. R., & Winkler, D. A. (2019). Toward Interpretable Machine Learning Models for Materials Discovery. Advanced Intelligent Systems, 1(8), Article 1900045. https://doi.org/10.1002/aisy.201900045

Machine learning (ML) and artificial intelligence (AI) methods for modeling useful materials properties are now important technologies for rational design and optimization of bespoke functional materials. Although these methods make good predictions... Read More about Toward Interpretable Machine Learning Models for Materials Discovery.

Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators (2019)
Journal Article
Dundas, A. A., Hook, A. L., Alexander, M. R., Kingman, S. W., Dimitrakis, G., & Irvine, D. J. (2019). Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators. Reaction Chemistry and Engineering, 4(8), 1472-1476. https://doi.org/10.1039/c9re00173e

© 2019 The Royal Society of Chemistry. A novel single-well prototype high throughput microwave reactor geometry has been produced and shown to be capable of synthesizing an array of non-commercially available methacrylate monomers. The reactor, which... Read More about Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators.