Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices (2021)
Journal Article
He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., …Wildman, R. D. (2022). Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials, 281, Article 121350. https://doi.org/10.1016/j.biomaterials.2021.121350

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured throu... Read More about Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices.

Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms (2021)
Journal Article
Lion, A., Wildman, R. D., Alexander, M. R., & Roberts, C. J. (2021). Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms. Pharmaceutics, 13(10), Article 1679. https://doi.org/10.3390/pharmaceutics13101679

One of the most striking characteristics of 3D printing is its capability to produce multi-material objects with complex geometry. In pharmaceutics this translates to the possibility of dosage forms with multi-drug loading, tailored dosing and releas... Read More about Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms.

A new particle mounting method for surface analysis (2021)
Journal Article
Dundas, A. A., Kern, S., Cuzzucoli Crucitti, V., Scurr, D. J., Wildman, R., Irvine, D. J., & Alexander, M. R. (2022). A new particle mounting method for surface analysis. Surface and Interface Analysis, 54(4), 374-380. https://doi.org/10.1002/sia.7010

The chemical analysis of microparticles is challenging due to the need to mount the particles on a substrate for analysis; double-sided adhesive tape is often used (sometimes conductive), however that is usually coated with poly (dimethyl siloxane) (... Read More about A new particle mounting method for surface analysis.

Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods (2021)
Journal Article
Cuzzucoli Crucitti, V., Contreas, L., Taresco, V., Howard, S. C., Dundas, A. A., Limo, M. J., …Irvine, D. J. (2021). Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods. ACS Applied Materials and Interfaces, 13(36), 43290-43300. https://doi.org/10.1021/acsami.1c08662

We report the first successful combination of three distinct high-throughput techniques to deliver the accelerated design, synthesis, and property screening of a library of novel, bio-instructive, polymeric, comb-graft surfactants. These three-dimens... Read More about Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods.

Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers (2021)
Journal Article
Ruiz-Cantu, L., Trindade, G. F., Taresco, V., Zhou, Z., He, Y., Burroughs, L., …Wildman, R. D. (2021). Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers. ACS Applied Materials and Interfaces, 13(33), 38969-38978. https://doi.org/10.1021/acsami.1c07850

Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. Phase separation has been exploited to fabricate intricate microstructures in many fields including cell biology, tissue... Read More about Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers.

Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants (2021)
Journal Article
Henshaw, C. A., Dundas, A. A., Cuzzucoli Crucitti, V., Alexander, M. R., Wildman, R., Rose, F. R. A. J., …Williams, P. M. (2021). Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants. Molecules, 26(11), Article 3302. https://doi.org/10.3390/molecules26113302

Droplet microfluidics can produce highly tailored microparticles whilst retaining monodispersity. However, these systems often require lengthy optimisation, commonly based on a trial-and-error approach, particularly when using bio-instructive, polyme... Read More about Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants.

Inkjet 3D Printing of Polymers Resistant to Fungal Attachment (2021)
Journal Article
He, Y., Vallières, C., Alexander, M. R., Wildman, R. D., & Avery, S. V. (2021). Inkjet 3D Printing of Polymers Resistant to Fungal Attachment. Bio-protocol, 11(9), Article e4016. https://doi.org/10.21769/BioProtoc.4016

Inkjet 3D printing is an additive manufacturing method that allows the user to produce a small batch of customized devices for comparative study versus commercial products. Here, we describe the use of a commercial 2D ink development system (Dimatix... Read More about Inkjet 3D Printing of Polymers Resistant to Fungal Attachment.