Skip to main content

Research Repository

Advanced Search

All Outputs (126)

MicroRNA-511-3p Mediated Modulation of the Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Controls LPS-Induced Inflammatory Responses in Human Monocyte Derived DCs (2022)
Journal Article

Abstract: The peroxisome proliferator-activated receptor gamma (PPAR) is a ligand-activated transcription factor expressed in dendritic cells (DCs), where it exerts anti-inflammatory responses against TLR4-induced inflammation. Recently, microRNA-511... Read More about MicroRNA-511-3p Mediated Modulation of the Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Controls LPS-Induced Inflammatory Responses in Human Monocyte Derived DCs.

Erratum: “Human lung-on-chips: Advanced systems for respiratory virus models and assessment of immune response” [Biomicrofluidics 15, 021501 (2021)] (2021)
Journal Article

It has been drawn to the authors’ attention that our original article1 did not appropriately attribute portions of a figure that we had reused from Ref. 2. The figure caption as it should have appeared follows. FIG. 2. (a) Schematic depicting human l... Read More about Erratum: “Human lung-on-chips: Advanced systems for respiratory virus models and assessment of immune response” [Biomicrofluidics 15, 021501 (2021)].

Development of a multiparametric (bio)sensing platform for continuous monitoring of stress metabolites (2021)
Journal Article

There is a growing need for real-time monitoring of metabolic products that could reflect cell damages over extended periods. In this paper, we report the design and development of an original multiparametric (bio)sensing platform that is tailored fo... Read More about Development of a multiparametric (bio)sensing platform for continuous monitoring of stress metabolites.

Discovery of synergistic material-topography combinations to achieve immunomodulatory osteoinductive biomaterials using a novel in vitro screening method: The ChemoTopoChip (2021)
Journal Article

© 2021 The Authors Human mesenchymal stem cells (hMSCs) are widely represented in regenerative medicine clinical strategies due to their compatibility with autologous implantation. Effective bone regeneration involves crosstalk between macrophages an... Read More about Discovery of synergistic material-topography combinations to achieve immunomodulatory osteoinductive biomaterials using a novel in vitro screening method: The ChemoTopoChip.

Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties (2020)
Journal Article

© 2020 The Authors New strategies for immune modulation have shown real promise in regenerative medicine as well as the fight against autoimmune diseases, allergies, and cancer. Dendritic cells (DCs) are gatekeepers of the immune system and their abi... Read More about Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties.

Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants (2020)
Journal Article

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A flow-focusing microfluidic device is used to produce functionalized monodisperse polymer particles with surface chemistries designed to control bacterial biofilm formatio... Read More about Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants.

Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo (2020)
Journal Article

© 2020 The Author(s) Implantation of medical devices can result in inflammation. A large library of polymers is screened, and a selection found to promote macrophage differentiation towards pro- or anti-inflammatory phenotypes. The bioinstructive pro... Read More about Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo.

Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation (2020)
Journal Article

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Macrophages play a central role in orchestrating immune responses to foreign materials, which are often responsible for the failure of implanted medical devices. Material t... Read More about Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation.

Facile Dye-Initiated Polymerization of Lactide–Glycolide Generates Highly Fluorescent Poly(lactic-co-glycolic Acid) for Enhanced Characterization of Cellular Delivery (2020)
Journal Article

Copyright © 2020 American Chemical Society. Poly(lactic-co-glycolic acid) (PLGA) is a versatile synthetic copolymer that is widely used in pharmaceutical applications. This is because it is well-tolerated in the body, and copolymers of varying physic... Read More about Facile Dye-Initiated Polymerization of Lactide–Glycolide Generates Highly Fluorescent Poly(lactic-co-glycolic Acid) for Enhanced Characterization of Cellular Delivery.

LC-MS metabolomics comparisons of cancer cell and macrophage responses to methotrexate and polymer-encapsulated methotrexate (2019)
Journal Article

Methotrexate (MTX) is a folate analogue antimetabolite widely used for the treatment of rheumatoid arthritis and cancer. A number of studies have shown that MTX delivered via nanoparticle carriers is more potent against cancer cells than free MTX, a... Read More about LC-MS metabolomics comparisons of cancer cell and macrophage responses to methotrexate and polymer-encapsulated methotrexate.

A composite Gelatin/hyaluronic acid hydrogel as an ECM mimic for developing mesenchymal stem cell derived epithelial tissue patches (2019)
Journal Article

Here we report fabrication of Gelatin based biocomposite films and their application in developing epithelial patches. The films were loaded with an epithelial cell growth factor cocktail and used as an extracellular matrix mimic (ECM mimic) for in v... Read More about A composite Gelatin/hyaluronic acid hydrogel as an ECM mimic for developing mesenchymal stem cell derived epithelial tissue patches.