Dr KEVIN WEBB KEVIN.WEBB@NOTTINGHAM.AC.UK
Associate Professor
Condenser-free contrast methods for transmitted-light microscopy
Webb, Kevin F.
Authors
Abstract
Phase contrast microscopy allows the study of highly transparent yet detail-rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser- free yet highly effective method of obtaining phase contrast in transmitted-light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light-path such that observation of the objective back focal plane places the il- luminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser-free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser-free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour-contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser-free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next-generation transmitted-light microscopy designs. The condenser-free illumination method, using rings of independent or radially-scanned emitters, may be exploited in future in other electromagnetic wavebands, including X-rays or the infrared.
Citation
Webb, K. F. (2014). Condenser-free contrast methods for transmitted-light microscopy. Journal of Microscopy, 257(1), 8-22. https://doi.org/10.1111/jmi.12181
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 14, 2014 |
Publication Date | Sep 16, 2014 |
Deposit Date | Sep 22, 2015 |
Publicly Available Date | Dec 4, 2018 |
Journal | Journal of Microscopy |
Print ISSN | 0022-2720 |
Electronic ISSN | 1365-2818 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 257 |
Issue | 1 |
Pages | 8-22 |
DOI | https://doi.org/10.1111/jmi.12181 |
Keywords | Microscopy, Imaging, LED, Phase contrast |
Public URL | https://nottingham-repository.worktribe.com/output/735886 |
Publisher URL | http://onlinelibrary.wiley.com/doi/10.1111/jmi.12181/abstract |
Contract Date | Sep 22, 2015 |
Files
WEBB-2015-Journal_of_Microscopy
(2.7 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Investigation of Exhaust Particles on Different TEM Grids: a Comparison between Graphene Oxide and Silicon Nitride Grids
(2023)
Presentation / Conference Contribution
Non-invasive hydrodynamic imaging in plant roots at cellular resolution
(2021)
Journal Article
Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells
(2020)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search