Skip to main content

Research Repository

Advanced Search

Tuning the interactions between electron spins in fullerene-based triad systems

Lebedeva, Maria A.; Chamberlain, Thomas W.; Davies, E. Stephen; Thomas, Bradley E.; Schr�der, Martin; Khlobystov, Andrei N.

Tuning the interactions between electron spins in fullerene-based triad systems Thumbnail


Maria A. Lebedeva

Thomas W. Chamberlain

E. Stephen Davies

Bradley E. Thomas

Martin Schr�der

Andrei N. Khlobystov


A series of six fullerene-linker-fullerene triads have been prepared by the stepwise addition of the fullerene cages to bridging moieties thus allowing the systematic variation of fullerene cage (C60 or C70) and linker (oxalate or terephthalate) and enabling precise control over the inter-fullerene separation. The fullerene triads exhibit good solubility in common organic solvents, have linear geometries and are diastereomerically pure. Cyclic voltammetric measurements demonstrate the excellent electron accepting capacity of all triads, with up to 6 electrons taken up per molecule in the potential range between -2.3 and 0.2 V (vs. Fc+/Fc). No significant electronic interactions between fullerene cages are observed in the ground state indicating that the individual properties of each C60 or C70 cage are retained within the triads. The electron-electron interactions in the electrochemically generated dianions of these triads, with one electron per fullerene cage were studied by EPR spectroscopy. The nature of electron-electron coupling observed at 77 K can be described as an equilibrium between a doublet and triplet state biradical which depends on the interfullerene spacing. The shorter oxalate-bridged triads exhibit stronger spin-spin coupling with triplet character, while in the longer terephthalate-bridged triads the intramolecular spin-spin coupling is significantly reduced.


Lebedeva, M. A., Chamberlain, T. W., Davies, E. S., Thomas, B. E., Schröder, M., & Khlobystov, A. N. (2014). Tuning the interactions between electron spins in fullerene-based triad systems. Beilstein Journal of Organic Chemistry, 10,

Journal Article Type Article
Publication Date Feb 5, 2014
Deposit Date Aug 27, 2015
Publicly Available Date Aug 27, 2015
Journal Beilstein Journal of Organic Chemistry
Print ISSN 1860-5397
Electronic ISSN 1860-5397
Publisher Beilstein-Institut
Peer Reviewed Peer Reviewed
Volume 10
Keywords Fullerene dimers, fullerene triads, electrochemistry, EPR, spin-spin interactions
Public URL
Publisher URL


You might also like

Downloadable Citations