Supporting Information

Tuning the Interactions between Electron Spins in Fullerene-Based Triad Systems

Maria A. Lebedeva,^a Thomas W. Chamberlain,^a E. Stephen Davies,^a Bradley E. Thomas,^a Martin Schröder^a and Andrei N. Khlobystov^{*a,b}

^aSchool of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

^bNottingham Nanoscience & Nanotechnology Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

1. ¹H and ¹³C NMR spectra of fullerene dimers **4-6**.

Figure S1. ¹H (top) and ¹³C (bottom) NMR spectra of triad **4**. Spectra were recorded in a 1:1 mixture of CS_2 and $CDCl_3$.

Figure S2. Views of (8,25) (**a**) and (7,22) (**b**) regio isomers of functionalised C_{70} (top) and ¹H NMR (middle) and ¹³C NMR (bottom) spectra of triad **5**. The spectra were recorded in a mixture of CS₂ and CDCl₃.

Figure S3. ¹H NMR (top) and ¹³C NMR (bottom) spectra of triad **6**. The spectra were recorded in a mixture of CS_2 and $CDCl_3$.

2. Geometry of fullerene dimers 1 and 4.

Figure S4. Views of shortest (top) and longest (bottom) possible conformations of fullerene dimers 1 (a) and 4 (b) showing the shortest distances between the fullerene cages and the centre-to-centre distances.

3. Cyclic voltammetry of 7 and 8.

Figure S5. Cyclic voltammograms of **7** (top) and **8** (bottom). Scans were recorded as 0.5 mM solutions in *o*-dichlorobenzene containing 0.2 M [${}^{n}Bu_{4}N$][BF₄] as the supporting electrolyte at a scan rate of 100 mV.

Figure S6. Square wave voltammograms of **1** - **8**. Scans were recorded as 0.5 mM solutions in *o*-dichlorobenzene containing 0.2 M [${}^{n}Bu_{4}N$][BF₄] as the supporting electrolyte.

4. EPR spectra for compound 7^{1-}

Figure S7. Frozen solution EPR spectrum of 7^{1-} recorded at 77 K showing the central feature corresponding to the C_{60}^{--} and features with D = 9 G corresponding to the intermolecular, or "powder" triplet. Additional small features are noted in the spectrum. The origin of these features is unclear but may result from an unidentified triplet (D = 26 G).

5. EPR spectra for C_{70} containing triad 6 and precursor 8.

Figure S8. Fluid solution EPR spectra recorded at room temperature (a) and frozen solution EPR spectra recorded at 77 K (b) for 6^{2-} and 8^{1-} .