Dr RALPH AKYEA RALPH.AKYEA1@NOTTINGHAM.AC.UK
Senior Research Fellow
Predicting major adverse cardiovascular events for secondary prevention: protocol for a systematic review and meta-analysis of risk prediction models
Akyea, Ralph K.; Leonardi-Bee, Jo; Asselbergs, Folkert W.; Patel, Riyaz S.; Durrington, Paul; Wierzbicki, Anthony S.; Ibiwoye, Oluwaseun Helen; Kai, Joe; Qureshi, Nadeem; Weng, Stephen F.
Authors
JO LEONARDI-BEE jo.leonardi-bee@nottingham.ac.uk
Professor of Evidence Synthesis
Folkert W. Asselbergs
Riyaz S. Patel
Paul Durrington
Anthony S. Wierzbicki
Oluwaseun Helen Ibiwoye
Professor JOE KAI joe.kai@nottingham.ac.uk
Professor of Primary Care
Professor NADEEM QURESHI nadeem.qureshi@nottingham.ac.uk
Clinical Professor
Stephen F. Weng
Abstract
Introduction: Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. With advances in early diagnosis and treatment of CVD and increasing life expectancy, more people are surviving initial CVD events. However, models to stratifying disease severity risk in patients with established CVD for effective secondary prevention strategies are inadequate. Multivariable prognostic models to stratify CVD risk may allow personalised treatment interventions. This review aims to systematically review the existing multivariable prognostic models for the recurrence of CVD or major adverse cardiovascular events in adults with established CVD diagnosis.
Methods and analysis: Bibliographic databases (Ovid MEDLINE, EMBASE, PsycINFO and Web of Science) will be searched, from database inception to April 2020, using terms relating to the clinical area and prognosis. Hand search of the reference lists of included studies will also be done to identify additional published studies. No restrictions on language of publications will be applied. Eligible studies present multivariable models (derived or validated) of adults (aged 16 years and over) with an established diagnosis of CVD, reporting at least one of the components of the primary outcome of major adverse cardiovascular events (defined as either coronary heart disease, stroke, peripheral artery disease, heart failure or CVD-related mortality). Reviewing will be done by two reviewers independently using the pre-defined criteria. Data will be extracted for included full-text articles. Risk of bias will be assessed using the Prediction model study Risk Of Bias Assessment Tool (PROBAST). Prognostic models will be summarised narratively. If a model is tested in multiple validation studies, the predictive performance will be summarised using a random-effects meta-analysis model to account for any between-study heterogeneity.
Citation
Akyea, R. K., Leonardi-Bee, J., Asselbergs, F. W., Patel, R. S., Durrington, P., Wierzbicki, A. S., …Weng, S. F. (2020). Predicting major adverse cardiovascular events for secondary prevention: protocol for a systematic review and meta-analysis of risk prediction models. BMJ Open, 10(7), Article e034564. https://doi.org/10.1136/bmjopen-2019-034564
Journal Article Type | Article |
---|---|
Acceptance Date | May 31, 2020 |
Online Publication Date | Jul 27, 2020 |
Publication Date | 2020-07 |
Deposit Date | Jun 4, 2020 |
Publicly Available Date | Jul 27, 2020 |
Journal | BMJ Open |
Electronic ISSN | 2044-6055 |
Publisher | BMJ Publishing Group |
Peer Reviewed | Peer Reviewed |
Volume | 10 |
Issue | 7 |
Article Number | e034564 |
DOI | https://doi.org/10.1136/bmjopen-2019-034564 |
Keywords | systematic review, meta-analysis, protocol, cardiovascular disease, recurrence, severity, prognostic, multivariable models |
Public URL | https://nottingham-repository.worktribe.com/output/4577420 |
Publisher URL | https://bmjopen.bmj.com/content/10/7/e034564 |
Files
e034564.full
(275 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
Akyea BMJ Open 2020 AAM Protocol
(160 Kb)
PDF
You might also like
Maternal Obesity and Infant Mortality: A Meta-Analysis
(2014)
Journal Article
Small area synthetic estimates of smoking prevalence during pregnancy in England
(2015)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search