Skip to main content

Research Repository

Advanced Search

Outputs (41)

Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering (2020)
Journal Article
Amer, M. H., Alvarez-Paino, M., McLaren, J., Pappalardo, F., Trujillo, S., Wong, J. Q., Shrestha, S., Abdelrazig, S., Stevens, L. A., Lee, J. B., Kim, D. H., González-García, C., Needham, D., Salmerón-Sánchez, M., Shakesheff, K. M., Alexander, M. R., Alexander, C., & Rose, F. R. (2021). Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering. Biomaterials, 266, Article 120450. https://doi.org/10.1016/j.biomaterials.2020.120450

© 2020 The Authors Mesenchymal stem cells are the focus of intense research in bone development and regeneration. The potential of microparticles as modulating moieties of osteogenic response by utilizing their architectural features is demonstrated... Read More about Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering.

Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation (2020)
Preprint / Working Paper
He, Y., Begines, B., Luckett, J., Dubern, J.-F., Hook, A., Prina, E., Rose, F. R., Tuck, C., Hague, R., Irvine, D., Williams, P., Alexander, M. R., & Wildman, R. D. Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation

We demonstrate the formulation of advanced functional 3D printing inks that prevent the formation of bacterial biofilms in vivo. Starting from polymer libraries, we show that a biofilm resistant object can be 3D printed with the potential for shape a... Read More about Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation.

Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants (2020)
Journal Article
Dundas, A. A., Cuzzucoli Crucitti, V., Haas, S., Dubern, J., Latif, A., Romero, M., Sanni, O., Ghaemmaghami, A. M., Williams, P., Alexander, M. R., Wildman, R., & Irvine, D. J. (2020). Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants. Advanced Functional Materials, 30(36), Article 2001821. https://doi.org/10.1002/adfm.202001821

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A flow-focusing microfluidic device is used to produce functionalized monodisperse polymer particles with surface chemistries designed to control bacterial biofilm formatio... Read More about Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants.

Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration (2020)
Journal Article
Vallieres, C., Hook, A. L., He, Y., Crucitti, V. C., Figueredo, G., Davies, C. R., Burroughs, L., Winkler, D. A., Wildman, R. D., Irvine, D. J., Alexander, M. R., & Avery, S. V. (2020). Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration. Science Advances, 6(23), Article eaba6574. https://doi.org/10.1126/sciadv.aba6574

© 2020 The Authors. Fungi have major, negative socioeconomic impacts, but control with bioactive agents is increasingly restricted, while resistance is growing. Here, we describe an alternative fungal control strategy via materials operating passivel... Read More about Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration.

Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections (2020)
Journal Article
Kurmoo, Y., Hook, A. L., Harvey, D., Dubern, J.-F., Williams, P., Morgan, S. P., Korposh, S., & Alexander, M. R. (2020). Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections. Biomaterials Science, 8(5), 1464-1477. https://doi.org/10.1039/c9bm00875f

Real time monitoring of bacterial attachment to medical devices provides opportunities to detect early biofilm formation and instigate appropriate interventions before infection develops. This study utilises long period grating (LPG) optical fibre se... Read More about Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections.

Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing (2019)
Journal Article
Clark, E. A., Alexander, M. R., Irvine, D. J., Roberts, C. J., Wallace, M. J., Yoo, J., & Wildman, R. D. (2020). Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing. International Journal of Pharmaceutics, 578, Article 118805. https://doi.org/10.1016/j.ijpharm.2019.118805

© 2019 In this study, we investigate the viability of three-dimensional (3D) inkjet printing with UV curing to produce solid dosage forms containing a known poorly soluble drug, carvedilol. The formulation consists of 10 wt% carvedilol, Irgacure 2959... Read More about Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing.

Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation (2019)
Journal Article
Dundas, A. A., Sanni, O., Dubern, J.-F., Dimitrakis, G., Hook, A. L., Irvine, D. J., Williams, P., & Alexander, M. R. (2019). Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation. Advanced Materials, 31(49), Article 1903513. https://doi.org/10.1002/adma.201903513

ynthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical‐device‐centered infections. The incidence rate for catheter‐associated urinary tract infections is between 3% and 7% for each day o... Read More about Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation.

Wireless Nanobioelectronics for Electrical Intracellular Sensing (2019)
Journal Article
Sanjuan-Alberte, P., Jain, A., Shaw, A. J., Abayzeed, S. A., Domínguez, R. F., Alea-Reyes, M. E., Clark, M., Alexander, M. R., Hague, R. J. M., Pérez-García, L., & Rawson, F. J. (2019). Wireless Nanobioelectronics for Electrical Intracellular Sensing. ACS Applied Nano Materials, 2(10), 6397-6408. https://doi.org/10.1021/acsanm.9b01374

For the field of bioelectronics to make an impact on healthcare, there is an urgent requirement for the development of “wireless” electronic systems to enable modulation of chemistry inside of cells. Herein we report on an intracellular wireless elec... Read More about Wireless Nanobioelectronics for Electrical Intracellular Sensing.

Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior (2019)
Journal Article
Vaithilingam, J., Sanjuan‐Alberte, P., Campora, S., Rance, G. A., Jiang, L., Thorpe, J., Burroughs, L., Tuck, C. J., Denning, C., Wildman, R. D., Hague, R. J. M., Alexander, M. R., & Rawson, F. J. (2019). Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior. Advanced Functional Materials, 29(38), Article 1902016. https://doi.org/10.1002/adfm.201902016

Biological structures control cell behavior via physical, chemical, electrical, and mechanical cues. Approaches that allow us to build devices that mimic these cues in a combinatorial way are lacking due to there being no suitable instructive materia... Read More about Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior.

High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations (2019)
Journal Article
Zhou, Z., Ruiz Cantu, L., Chen, X., Alexander, M. R., Roberts, C. J., Hague, R., Tuck, C., Irvine, D., & Wildman, R. (2019). High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations. Additive Manufacturing, 29, Article 100792. https://doi.org/10.1016/j.addma.2019.100792

Inkjet printing has been used as an Additive Manufacturing (AM) method to fabricate three-dimensional (3D) structures. However, a lack of materials suitable for inkjet printing poses one of the key challenges that impedes industry from fully adopting... Read More about High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations.