Skip to main content

Research Repository

Advanced Search

Outputs (24)

Acoustic band engineering in terahertz quantum-cascade lasers and arbitrary superlattices (2023)
Journal Article
Demić, A., Valavanis, A., Dean, P., Li, L., Davies, A. G., Linfield, E. H., …Harrison, P. (2023). Acoustic band engineering in terahertz quantum-cascade lasers and arbitrary superlattices. Physical Review B, 107(23), Article 235411. https://doi.org/10.1103/physrevb.107.235411

We present theoretical methods for the analysis of acoustic phonon modes in superlattice structures, and terahertz-frequency quantum-cascade lasers (THz QCLs). Our generalized numerical solution of the acoustic-wave equation provides good agreement w... Read More about Acoustic band engineering in terahertz quantum-cascade lasers and arbitrary superlattices.

Coherent Phononics of van der Waals Layers on Nanogratings (2022)
Journal Article
Yan, W., Akimov, A. V., Barra-Burillo, M., Bayer, M., Bradford, J., Gusev, V. E., …Linnik, T. L. (2022). Coherent Phononics of van der Waals Layers on Nanogratings. Nano Letters, 22(16), 6509-6515. https://doi.org/10.1021/acs.nanolett.2c01542

Strain engineering can be used to control the physical properties of two-dimensional van der Waals (2D-vdW) crystals. Coherent phonons, which carry dynamical strain, could push strain engineering to control classical and quantum phenomena in the unex... Read More about Coherent Phononics of van der Waals Layers on Nanogratings.

Luminescence and Crystalline Properties of InGaN-based LED on Si Substrate with AlN/GaN Superlattice Structure (2021)
Journal Article
Alias, E. A., Taib, M. I. M., Bakar, A. S. A., Egawa, T., Kent, A. J., Kamil, W. M. W. A., & Zainal, N. (2021). Luminescence and Crystalline Properties of InGaN-based LED on Si Substrate with AlN/GaN Superlattice Structure. Journal of Physical Science, 32(3), 1-11. https://doi.org/10.21315/jps2021.32.3.1

A crack-free indium gallium nitride (InGaN) based light emitting diode (LED) grown on silicon (Si) substrate was successfully demonstrated by introducing aluminium nitride/gallium nitride (AlN/GaN) superlattice structure (SLS) in the growth of the LE... Read More about Luminescence and Crystalline Properties of InGaN-based LED on Si Substrate with AlN/GaN Superlattice Structure.

Nondestructive Picosecond Ultrasonic Probing of Intralayer and van der Waals Interlayer Bonding in α- and β-In2Se3 (2021)
Journal Article
Yan, W., Akimov, A. V., Page, J. A., Greenaway, M. T., Balanov, A. G., Patanè, A., & Kent, A. J. (2021). Nondestructive Picosecond Ultrasonic Probing of Intralayer and van der Waals Interlayer Bonding in α- and β-In2Se3. Advanced Functional Materials, 31(50), Article 2106206. https://doi.org/10.1002/adfm.202106206

The interplay between the strong intralayer covalent-ionic bonds and the weak interlayer van der Waals (vdW) forces between the neighboring layers of vdW crystals gives rise to unique physical and chemical properties. Here, the intralayer and interla... Read More about Nondestructive Picosecond Ultrasonic Probing of Intralayer and van der Waals Interlayer Bonding in α- and β-In2Se3.

Performance evaluation of a new 30 ?m thick GaAs X-ray detector grown by MBE (2021)
Journal Article
Lioliou, G., Poyser, C. L., Whale, J., Campion, R. P., Kent, A. J., & Barnett, A. (2021). Performance evaluation of a new 30 ?m thick GaAs X-ray detector grown by MBE. Materials Research Express, 8(2), Article 025909. https://doi.org/10.1088/2053-1591/abe73c

A circular mesa (400 μm diameter) GaAs p+-i-n+ photodiode with a 30 μm thick i layer was characterized for its performance as a detector in photon counting x-ray spectroscopy at 20 °C. The detector was fabricated from material grown by molecular beam... Read More about Performance evaluation of a new 30 ?m thick GaAs X-ray detector grown by MBE.

Low-energy switching of antiferromagnetic CuMnAs/GaP using sub-10 nanosecond current pulses (2020)
Journal Article
Omari, K. A., Barton, L. X., Amin, O., Campion, R. P., Rushforth, A. W., Kent, A. J., …Edmonds, K. W. (2020). Low-energy switching of antiferromagnetic CuMnAs/GaP using sub-10 nanosecond current pulses. Journal of Applied Physics, 127(19), Article 193906. https://doi.org/10.1063/5.0006183

The recently discovered electrical-induced switching of antiferromagnetic (AF) materials that have spatial inversion asymmetry has enriched the field of spintronics immensely and opened the door for the concept of antiferromagnetic memory devices. Cu... Read More about Low-energy switching of antiferromagnetic CuMnAs/GaP using sub-10 nanosecond current pulses.

Temporal superoscillations of subterahertz coherent acoustic phonons (2020)
Journal Article
Brehm, S., Akimov, A. V., Campion, R. P., & Kent, A. J. (2020). Temporal superoscillations of subterahertz coherent acoustic phonons. Physical Review Research, 2(2), Article 023009. https://doi.org/10.1103/physrevresearch.2.023009

We observe coherent acoustic phonon superoscillations at subterahertz frequencies. The superoscillations result from the interference of optically excited coherent longitudinal acoustic phonon modes in a GaAs/AlGaAs superlattice. The superoscillation... Read More about Temporal superoscillations of subterahertz coherent acoustic phonons.

High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses (2020)
Journal Article
Dunn, A., Poyser, C., Dean, P., Demić, A., Valavanis, A., Indjin, D., …Kent, A. (2020). High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses. Nature Communications, 11, Article 835. https://doi.org/10.1038/s41467-020-14662-w

The fast modulation of lasers is a fundamental requirement for applications in optical communications, high-resolution spectroscopy and metrology. In the terahertz-frequency range, the quantum-cascade laser (QCL) is a high-power source with the poten... Read More about High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses.

30 μm thick GaAs X-ray p + -i-n + photodiode grown by MBE (2019)
Journal Article
Lioliou, G., Poyser, C., Butera, S., Campion, R., Kent, A., & Barnett, A. (2019). 30 μm thick GaAs X-ray p + -i-n + photodiode grown by MBE. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 946, Article 162670. https://doi.org/10.1016/j.nima.2019.162670

7 8 A GaAs p +-in + photodiode detector with a 30 μm thick i layer and a 400 μm diameter was processed using 9 standard wet chemical etching from material grown by molecular beam epitaxy. The detector was 10 characterized for its electrical and photo... Read More about 30 μm thick GaAs X-ray p + -i-n + photodiode grown by MBE.

A high electron mobility phonotransistor (2018)
Journal Article
Poyser, C. L., Li, L. H., Campion, R. P., Akimov, A. V., Linfield, E. H., Davies, A. G., …Kent, A. J. (2018). A high electron mobility phonotransistor. Communications Physics, 1, 1-7. https://doi.org/10.1038/s42005-018-0059-7

Acoustoelectric devices convert acoustic energy to electrical energy and vice versa. Devices working at much higher acoustic frequencies than those currently available have potential scientific and technological applications, e.g.: as detectors in ph... Read More about A high electron mobility phonotransistor.