Skip to main content

Research Repository

Advanced Search

Outputs (35)

Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids (2024)
Journal Article
Suvannapruk, W., Fisher, L. E., Luckett, J. C., Edney, M. K., Kotowska, A. M., Kim, D., …Alexander, M. R. (in press). Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids. Advanced Science, https://doi.org/10.1101/2023.08.18.553860

A key goal for implanted medical devices is that they do not elicit a detrimental immune response. Macrophages play critical roles in modulation of the host immune response and are the major cells responsible for persistent inflammatory reactions to... Read More about Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids.

Correction to “Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy” (2023)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D., Lim, K., …Bradshaw, T. D. (2024). Correction to “Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy”. ACS Omega, 9(1), Article 2012. https://doi.org/10.1021/acsomega.3c09291

Neil R. Thomas was added as an author. The change in authorship is reflected in the authorship of this Correction.

Characterisation of Aberrant Metabolic Pathways in Hepatoblastoma Using Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS) (2023)
Journal Article
Whitby, A., Pabla, P., Shastri, B., Amugi, L., Del Río-Álvarez, Á., Kim, D., …Dandapani, M. (2023). Characterisation of Aberrant Metabolic Pathways in Hepatoblastoma Using Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS). Cancers, 15(21), Article 5182. https://doi.org/10.3390/cancers15215182

Hepatoblastoma (HB) is a rare childhood tumour with an evolving molecular landscape. We present the first comprehensive metabolomic analysis using untargeted and targeted liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-M... Read More about Characterisation of Aberrant Metabolic Pathways in Hepatoblastoma Using Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS).

Predicting lameness in dairy cattle using untargeted liquid chromatography–mass spectrometry-based metabolomics and machine learning (2023)
Journal Article
Randall, L. V., Kim, D., Abdelrazig, S. M., Bollard, N. J., Hemingway-Arnold, H., Hyde, R. M., …Green, M. J. (2023). Predicting lameness in dairy cattle using untargeted liquid chromatography–mass spectrometry-based metabolomics and machine learning. Journal of Dairy Science, 106(10), 7033-7042. https://doi.org/10.3168/jds.2022-23118

Lameness in dairy cattle is a highly prevalent condition that impacts on the health and welfare of dairy cows. Prompt detection and implementation of effective treatment is important for managing lameness. However, major limitations are associated wi... Read More about Predicting lameness in dairy cattle using untargeted liquid chromatography–mass spectrometry-based metabolomics and machine learning.

Acai Berry (Euterpe sp.) Extracts Are Neuroprotective against L-Glutamate-Induced Toxicity by Limiting Mitochondrial Dysfunction and Cellular Redox Stress (2023)
Journal Article
ALNasser, M. N., AlSaadi, A. M., Whitby, A., Kim, D. H., Mellor, I. R., & Carter, W. G. (2023). Acai Berry (Euterpe sp.) Extracts Are Neuroprotective against L-Glutamate-Induced Toxicity by Limiting Mitochondrial Dysfunction and Cellular Redox Stress. Life, 13(4), Article 1019. https://doi.org/10.3390/life13041019

Aberrant accumulation of the neurotransmitter L-glutamate (L-Glu) has been implicated as a mechanism of neurodegeneration, and the release of L-Glu after stroke onset leads to a toxicity cascade that results in neuronal death. The acai berry (Euterpe... Read More about Acai Berry (Euterpe sp.) Extracts Are Neuroprotective against L-Glutamate-Induced Toxicity by Limiting Mitochondrial Dysfunction and Cellular Redox Stress.

Untargeted Metabolomic Characterization of Glioblastoma Intra-Tumor Heterogeneity Using OrbiSIMS (2023)
Journal Article
He, W., Edney, M. K., Paine, S. M. L., Griffiths, R. L., Scurr, D. J., Rahman, R., & Kim, D. (2023). Untargeted Metabolomic Characterization of Glioblastoma Intra-Tumor Heterogeneity Using OrbiSIMS. Analytical Chemistry, 95(14), 5994-6001. https://doi.org/10.1021/acs.analchem.2c05807

Glioblastoma (GBM) is an incurable brain cancer with a median survival of less than two years from diagnosis. The standard treatment of GBM is multimodality therapy comprising surgical resection, radiation, and chemotherapy. However, prognosis remain... Read More about Untargeted Metabolomic Characterization of Glioblastoma Intra-Tumor Heterogeneity Using OrbiSIMS.

Metabolic alterations in dairy cattle with lameness revealed by untargeted metabolomics of dried milk spots using direct infusion-tandem mass spectrometry and the triangulation of multiple machine learning models (2022)
Journal Article
He, W., Cardoso, A. S., Hyde, R. M., Green, M. J., Scurr, D. J., Griffiths, R., …Kim, D. (2022). Metabolic alterations in dairy cattle with lameness revealed by untargeted metabolomics of dried milk spots using direct infusion-tandem mass spectrometry and the triangulation of multiple machine learning models. Analyst, 147(23), 5537-5545. https://doi.org/10.1039/d2an01520j

Lameness is a major challenge in the dairy cattle industry in terms of animal welfare and economic implications. Better understanding of metabolic alteration associated with lameness could lead to early diagnosis and effective treatment{,} there-fore... Read More about Metabolic alterations in dairy cattle with lameness revealed by untargeted metabolomics of dried milk spots using direct infusion-tandem mass spectrometry and the triangulation of multiple machine learning models.

Metabolic flux analysis: a comprehensive review on sample preparation, analytical techniques, data analysis, computational modelling, and main application areas (2022)
Journal Article
de Falco, B., Giannino, F., Carteni, F., Mazzoleni, S., & Kim, D. H. (2022). Metabolic flux analysis: a comprehensive review on sample preparation, analytical techniques, data analysis, computational modelling, and main application areas. RSC Advances, 12(39), 25528-25548. https://doi.org/10.1039/d2ra03326g

Metabolic flux analysis (MFA) quantitatively describes cellular fluxes to understand metabolic phenotypes and functional behaviour after environmental and/or genetic perturbations. In the last decade, the application of stable isotopes became extreme... Read More about Metabolic flux analysis: a comprehensive review on sample preparation, analytical techniques, data analysis, computational modelling, and main application areas.

Metabolic Signatures of Surface-Modified Poly(lactic- co-glycolic acid) Nanoparticles in Differentiated THP-1 Cells Derived with Liquid Chromatography-Mass Spectrometry-based Metabolomics (2022)
Journal Article
Al-Natour, M. A., Abdelrazig, S., Ghaemmaghami, A. M., Alexander, C., & Kim, D. H. (2022). Metabolic Signatures of Surface-Modified Poly(lactic- co-glycolic acid) Nanoparticles in Differentiated THP-1 Cells Derived with Liquid Chromatography-Mass Spectrometry-based Metabolomics. ACS Omega, https://doi.org/10.1021/acsomega.2c01660

Polymeric nanoparticles (NPs) are widely used in preclinical drug delivery investigations, and some formulations are now in the clinic. However, the detailed effects of many NPs at the subcellular level have not been fully investigated. In this study... Read More about Metabolic Signatures of Surface-Modified Poly(lactic- co-glycolic acid) Nanoparticles in Differentiated THP-1 Cells Derived with Liquid Chromatography-Mass Spectrometry-based Metabolomics.

Metabolic modeling-based drug repurposing in Glioblastoma (2022)
Journal Article
Tomi-Andrino, C., Pandele, A., Winzer, K., King, J., Rahman, R., & Kim, D. (2022). Metabolic modeling-based drug repurposing in Glioblastoma. Scientific Reports, 12, Article 11189. https://doi.org/10.1038/s41598-022-14721-w

The manifestation of intra- and inter-tumor heterogeneity hinders the development of ubiquitous cancer treatments, thus requiring a tailored therapy for each cancer type. Specifically, the reprogramming of cellular metabolism has been identified as a... Read More about Metabolic modeling-based drug repurposing in Glioblastoma.