Skip to main content

Research Repository

Advanced Search

Outputs (22)

High-fidelity wheat plant reconstruction using 3D Gaussian splatting and neural radiance fields (2025)
Journal Article
Pound, M. P., Stuart, L. A., Wells, D. M., Atkinson, J. A., Castle-Green, S., & Walker, J. (2025). High-fidelity wheat plant reconstruction using 3D Gaussian splatting and neural radiance fields. GigaScience, 14, Article giaf022. https://doi.org/10.1093/gigascience/giaf022

Background: The reconstruction of 3-dimensional (3D) plant models can offer advantages over traditional 2-dimensional approaches by more accurately capturing the complex structure and characteristics of different crops. Conventional 3D reconstruction... Read More about High-fidelity wheat plant reconstruction using 3D Gaussian splatting and neural radiance fields.

Supporting data for "High-fidelity Wheat Plant Reconstruction using 3D Gaussian Splatting and Neural Radiance Fields" (2025)
Data
(2025). Supporting data for "High-fidelity Wheat Plant Reconstruction using 3D Gaussian Splatting and Neural Radiance Fields". [Data]. https://doi.org/10.5524/102661

The reconstruction of 3D plant models can offer advantages over traditional 2D approaches by more accurately capturing the complex structure and characteristics of different crops. Conventional 3D reconstruction techniques often produce sparse or noi... Read More about Supporting data for "High-fidelity Wheat Plant Reconstruction using 3D Gaussian Splatting and Neural Radiance Fields".

Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner (2024)
Preprint / Working Paper
Affortit, P., Faye, A., Jones, D. H., Benson, E., Sine, B., Burridge, J., Ndoye, M. S., Barry, L., Moukouanga, D., Barnard, S., Bhosale, R., Pridmore, T., Gantet, P., Vadez, V., Cubry, P., Kane, N., Bennett, M., Atkinson, J. A., Laplaze, L., Wells, D. M., & Grondin, A. (2024). Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner

Pearl millet is a key cereal for food security in drylands but its yield is strongly impacted by drought. We investigated how root anatomical traits contribute to mitigating the effects of vegetative drought stress in pearl millet.

We examined ass... Read More about Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner.

Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat (2022)
Journal Article
Kareem, S. H., Hawkesford, M. J., DeSilva, J., Weerasinghe, M., Wells, D. M., Pound, M. P., Atkinson, J. A., & Foulkes, M. J. (2022). Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat. European Journal of Agronomy, 140, Article 126603. https://doi.org/10.1016/j.eja.2022.126603

Root system architecture (RSA) is important in optimizing the use of nitrogen. High-throughput phenotyping techniques may be used to study root system architecture traits under controlled environments. A root phenotyping platform, consisting of germi... Read More about Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat.

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat (2022)
Journal Article
GRIFFITHS, M., ATKINSON, J. A., Gardiner, L. J., SWARUP, R., POUND, M. P., WILSON, M. H., BENNETT, M. J., & WELLS, D. M. (2022). Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21(4), 917-932. https://doi.org/10.1016/s2095-3119%2821%2963700-0

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.... Read More about Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat.

Data and statistical analysis scripts for manuscript on wheat root response to nitrate using X-ray CT and OpenSimRoot (2022)
Data
(2022). Data and statistical analysis scripts for manuscript on wheat root response to nitrate using X-ray CT and OpenSimRoot. [Data]. https://doi.org/10.5281/zenodo.5504299

Data and statistical analysis scripts for manuscript on wheat root response to nitrate using X-ray CT and OpenSimRoot

X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil - [https://doi.org/10.1002/ppj2.20036]... Read More about Data and statistical analysis scripts for manuscript on wheat root response to nitrate using X-ray CT and OpenSimRoot.

RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures (2019)
Journal Article
Yasrab, R., Atkinson, J. A., Wells, D. M., French, A. P., Pridmore, T. P., & Pound, M. P. (2019). RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. GigaScience, 8(11), Article giz123. https://doi.org/10.1093/gigascience/giz123

BACKGROUND: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the influence of abiotic stress such as high temperature and drought on a plant's ability to take up water and nutrients. Segmentat... Read More about RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures.

Supporting data for "RootNav 2.0: Deep Learning for Automatic Navigation of Complex Plant Root Architectures" (2019)
Data
French, A., Wells, D. M., Atkinson, J., Pound, M., Yasrab, R., & Pridmore, T. (2019). Supporting data for "RootNav 2.0: Deep Learning for Automatic Navigation of Complex Plant Root Architectures". [Data]. https://doi.org/10.5524/100651

We present a new image analysis approach that provides fully-automatic extraction of complex root system architectures from a range of plant species in varied imaging setups. Driven by modern deep-learning approaches, RootNav 2.0 replaces previously... Read More about Supporting data for "RootNav 2.0: Deep Learning for Automatic Navigation of Complex Plant Root Architectures".

Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling (2019)
Journal Article
Gibbs, J., French, A., Murchie, E., Wells, D., Pound, M., & Pridmore, T. (2020). Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(6), 1907-1917. https://doi.org/10.1109/TCBB.2019.2896908

Plant phenotyping is the quantitative description of a plant’s physiological, biochemical and anatomical status which can be used in trait selection and helps to provide mechanisms to link underlying genetics with yield. Here, an active vision- based... Read More about Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling.

Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat (2019)
Other
Griffiths, M., Atkinson, J. A., Gardiner, L.-J., Swarup, R., Pound, M. P., Wilson, M. H., Bennett, M. J., & Wells, D. M. (2019). Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource dependent response in wheat (Triticum aestivum L.... Read More about Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat.