Skip to main content

Research Repository

Advanced Search

DR FATIH GULEC's Outputs (38)

Kinetic analysis of solid fuel combustion in chemical looping for clean energy conversion (2024)
Journal Article
Güleç, F. (2024). Kinetic analysis of solid fuel combustion in chemical looping for clean energy conversion. Fuel, 378, Article 132911. https://doi.org/10.1016/j.fuel.2024.132911

Chemical looping combustion (CLC) offers an advanced, eco-friendly method for converting solid fuels into energy with inherent CO2 capture, presenting a cost-efficient solution. The kinetics of solid fuel CLC, crucial for reactor design, are not well... Read More about Kinetic analysis of solid fuel combustion in chemical looping for clean energy conversion.

Status and Progress of Nanomaterials Application in Hydrogen Storage (2024)
Book Chapter
Güleç, F., Oakley, W., Liu, X., Nayebossadri, S., Wang, F., Smith, E. K., …Lester, E. H. (2024). Status and Progress of Nanomaterials Application in Hydrogen Storage. In J. A. Okolie, E. I. Epelle, A. Mukherjee, & A. El Din Mahmoud (Eds.), Nanomaterials for Sustainable Hydrogen Production and Storage (136-165). CRC Press. https://doi.org/10.1201/9781003371007-8

Hydrogen could be one of the long-term environmentally friendly solutions for a sustainable and clean energy future. The fundamental elements of a hydrogen economy are sustainable and clean hydrogen production, low-cost/high-capacity storage, wide di... Read More about Status and Progress of Nanomaterials Application in Hydrogen Storage.

Generalizability of empirical correlations for predicting higher heating values of biomass (2024)
Journal Article
Daskin, M., Erdoğan, A., Güleç, F., & Okolie, J. A. (2024). Generalizability of empirical correlations for predicting higher heating values of biomass. Energy Sources, Part A, 46(1), 5434-5450. https://doi.org/10.1080/15567036.2024.2332472

Designing efficient biomass energy systems requires a thorough understanding of the physicochemical, thermodynamic, and physical properties of biomass. One crucial parameter in assessing biomass energy potential is the higher heating value (HHV), whi... Read More about Generalizability of empirical correlations for predicting higher heating values of biomass.

A CFD study on the start-up hydrodynamics of fluid catalytic cracking regenerator integrated with chemical looping combustion (2024)
Journal Article
Erdoğan, A., & Güleç, F. (in press). A CFD study on the start-up hydrodynamics of fluid catalytic cracking regenerator integrated with chemical looping combustion. Energy Sources, Part A, 46(1), 2941-2956. https://doi.org/10.1080/15567036.2024.2311327

The integration of chemical looping combustion with fluid catalytic cracking (CLC-FCC) is an innovative concept that serves as a cost-effective method for CO2 capture in refineries. This approach has the potential to reduce refinery CO2 emissions by... Read More about A CFD study on the start-up hydrodynamics of fluid catalytic cracking regenerator integrated with chemical looping combustion.

Exploring the Utilisation of Natural Biosorbents for Effective Methylene Blue Removal (2023)
Journal Article
Güleç, F., Williams, O., Samson, A., Kostas, E., Stevens, L. A., & Lester, E. (2023). Exploring the Utilisation of Natural Biosorbents for Effective Methylene Blue Removal. Applied Sciences, 14(1), Article 81. https://doi.org/10.3390/app14010081

This paper presents a comprehensive analysis of the adsorbent capacity of five distinctly different biosorbents derived from untreated biomasses. The optimal adsorption capacity of seaweed (Laminaria digitata), horse chestnut husk, hazelnut husk, rap... Read More about Exploring the Utilisation of Natural Biosorbents for Effective Methylene Blue Removal.

Utilisation of coal tar naphthalene oil fractions for the synthesis of value-added chemicals: alternative paths to mono- and di-methylnaphthalenes (2023)
Journal Article
Güleç, F., Koçkan, A., & Karaduman, A. (2023). Utilisation of coal tar naphthalene oil fractions for the synthesis of value-added chemicals: alternative paths to mono- and di-methylnaphthalenes. Research on Chemical Intermediates, 50(2), 881-903. https://doi.org/10.1007/s11164-023-05158-5

This study investigates the utilisation of coal tar naphthalene oil fraction (CTNOF), an economical by-product derived from the iron-steel industry, for the production of valuable chemicals, with a particular focus on methylnaphthalenes (MNs) and dim... Read More about Utilisation of coal tar naphthalene oil fractions for the synthesis of value-added chemicals: alternative paths to mono- and di-methylnaphthalenes.

Progress in lignocellulosic biomass valorization for biofuels and value‐added chemical production in the EU: A focus on thermochemical conversion processes (2023)
Journal Article
Güleç, F., Parthiban, A., Umenweke, G. C., Musa, U., Williams, O., Mortezaei, Y., …Okolie, J. A. (2023). Progress in lignocellulosic biomass valorization for biofuels and value‐added chemical production in the EU: A focus on thermochemical conversion processes. Biofuels, Bioproducts and Biorefining, https://doi.org/10.1002/bbb.2544

The demand for sustainable energy sources has increased owing to environmental concerns, such as climate change, rising energy demand and rapid industrialization. Biomass utilization for bioenergy and value‐added chemical production has become essent... Read More about Progress in lignocellulosic biomass valorization for biofuels and value‐added chemical production in the EU: A focus on thermochemical conversion processes.

Decarbonising bioenergy through biomass utilisation in chemical looping combustion and gasification: a review (2023)
Journal Article
Güleç, F., & Okolie, J. A. (2024). Decarbonising bioenergy through biomass utilisation in chemical looping combustion and gasification: a review. Environmental Chemistry Letters, 22, 121-147. https://doi.org/10.1007/s10311-023-01656-5

Biomass valorisation for bioenergy is crucial for establishing a sustainable low-carbon circular bioeconomy and addressing societal and environmental challenges. As global demand for renewable energy grows, effective waste management using biomass be... Read More about Decarbonising bioenergy through biomass utilisation in chemical looping combustion and gasification: a review.

Sustainability of bioenergy – Mapping the risks & benefits to inform future bioenergy systems (2023)
Journal Article
Welfle, A. J., Almena, A., Arshad, M. N., Banks, S. W., Butnar, I., Chong, K. J., …Röder, M. (2023). Sustainability of bioenergy – Mapping the risks & benefits to inform future bioenergy systems. Biomass and Bioenergy, 177, Article 106919. https://doi.org/10.1016/j.biombioe.2023.106919

Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised... Read More about Sustainability of bioenergy – Mapping the risks & benefits to inform future bioenergy systems.

Techno-economic feasibility of fluid catalytic cracking unit integrated chemical looping combustion – A novel approach for CO2 capture (2023)
Journal Article
Güleç, F., Okolie, J. A., & Erdogan, A. (2023). Techno-economic feasibility of fluid catalytic cracking unit integrated chemical looping combustion – A novel approach for CO2 capture. Energy, 284, Article 128663. https://doi.org/10.1016/j.energy.2023.128663

Oil refineries are collectively responsible for about 4–6% of the global CO2 emissions, largely because of the regenerator part of the Fluid Catalytic Cracking (FCC) unit (25–35%). An advanced combustion technology, also called chemical looping combu... Read More about Techno-economic feasibility of fluid catalytic cracking unit integrated chemical looping combustion – A novel approach for CO2 capture.

Low-temperature chemical looping oxidation of hydrogen for space heating (2023)
Journal Article
Güleç, F., Okolie, J. A., Clough, P. T., Erdogan, A., Meredith, W., & Snape, C. E. (2023). Low-temperature chemical looping oxidation of hydrogen for space heating. Journal of the Energy Institute, 110, Article 101355. https://doi.org/10.1016/j.joei.2023.101355

Chemical looping combustion (CLC) is an advanced combustion process in which the combustion reaction splits into two parts; in the first reaction metal oxides are used as oxygen suppliers for fuel combustion and then in the second reaction, reduced m... Read More about Low-temperature chemical looping oxidation of hydrogen for space heating.

A comprehensive analysis on the synthesis of value-added chemicals via slow pyrolysis: Valorisation of rapeseed residue, whitewood, and seaweed (Laminaria digitata) (2023)
Journal Article
Güleç, F., Sudibyo, H., Kostas, E. T., Williams, O., Samson, A., Meredith, W., & Lester, E. (2023). A comprehensive analysis on the synthesis of value-added chemicals via slow pyrolysis: Valorisation of rapeseed residue, whitewood, and seaweed (Laminaria digitata). Journal of Analytical and Applied Pyrolysis, 173, Article 106093. https://doi.org/10.1016/j.jaap.2023.106093

Pyrolysis has emerged as a crucial thermochemical conversion technology in the field of biomass processing. Maximising the valorisation of biomass is an essential area of investigation, as it plays a pivotal role in understanding the economic viabili... Read More about A comprehensive analysis on the synthesis of value-added chemicals via slow pyrolysis: Valorisation of rapeseed residue, whitewood, and seaweed (Laminaria digitata).

Multi-criteria decision analysis for the evaluation and screening of sustainable aviation fuel production pathways (2023)
Journal Article
Okolie, J. A., Awotoye, D., Tabat, M. E., Okoye, P. U., Epelle, E. I., Ogbaga, C. C., …Oboirien, B. (2023). Multi-criteria decision analysis for the evaluation and screening of sustainable aviation fuel production pathways. iScience, 26(6), Article 106944. https://doi.org/10.1016/j.isci.2023.106944

The aviation sector, a significant greenhouse gas emitter, must lower its emissions to alleviate the climate change impact. Decarbonization can be achieved by converting low-carbon feedstock to sustainable aviation fuel (SAF). This study reviews SAF... Read More about Multi-criteria decision analysis for the evaluation and screening of sustainable aviation fuel production pathways.

Process modelling integrated with interpretable machine learning for predicting hydrogen and char yield during chemical looping gasification (2023)
Journal Article
Sison, A. E., Etchieson, S. A., Güleç, F., Epelle, E. I., & Okolie, J. A. (2023). Process modelling integrated with interpretable machine learning for predicting hydrogen and char yield during chemical looping gasification. Journal of Cleaner Production, 414, Article 137579. https://doi.org/10.1016/j.jclepro.2023.137579

Chemical looping gasification (CLG) is a promising thermochemical process for the production of H2. CLG process is mainly based on oxygen transfer from an air reactor to a gasification reactor using solid metal oxides (also called oxygen carriers, (O... Read More about Process modelling integrated with interpretable machine learning for predicting hydrogen and char yield during chemical looping gasification.

Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals (2023)
Journal Article
Okolie, J. A., Jimoh, T., Akande, O., Okoye, P. U., Ogbaga, C. C., Adeleke, A. A., …Amenaghawon, A. N. (2023). Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals. Environments, 10(3), Article 46. https://doi.org/10.3390/environments10030046

Human and animal waste, including waste products originating from human or animal digestive systems, such as urine, feces, and animal manure, have constituted a nuisance to the environment. Inappropriate disposal and poor sanitation of human and anim... Read More about Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals.

Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials and Value-Added Chemicals (2023)
Preprint / Working Paper
Okolie, J. A., Jimoh, T., Akande, O., Okoye, P. U., Ogbaga, C. C., Adeleke, A. A., …Nosakhare Amenaghawon, A. Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials and Value-Added Chemicals

Human and animal waste, including waste products originating from human or animal digestive systems such as urine, feces, and animal manure, have constituted a nuisance to the environment. Inappropriate disposal and poor sanitation of human and anima... Read More about Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials and Value-Added Chemicals.

Process design, exergy, and economic assessment of a conceptual mobile autothermal methane pyrolysis unit for onsite hydrogen production (2023)
Journal Article
Tabat, M. E., Omoarukhe, F. O., Güleç, F., Adeniyi, D. E., Mukherjee, A., Okoye, P. U., …Okolie, J. A. (2023). Process design, exergy, and economic assessment of a conceptual mobile autothermal methane pyrolysis unit for onsite hydrogen production. Energy Conversion and Management, 278, Article 116707. https://doi.org/10.1016/j.enconman.2023.116707

The present study proposes a conceptual mobile autothermal methane pyrolysis unit for onsite hydrogen production. Considering the shortage of hydrogen pipeline infrastructure between production plants and fuelling stations in most places where hydrog... Read More about Process design, exergy, and economic assessment of a conceptual mobile autothermal methane pyrolysis unit for onsite hydrogen production.

CO2 capture from fluid catalytic crackers via chemical looping combustion: Regeneration of coked catalysts with oxygen carriers (2023)
Journal Article
Güleç, F., Meredith, W., & Snape, C. E. (2023). CO2 capture from fluid catalytic crackers via chemical looping combustion: Regeneration of coked catalysts with oxygen carriers. Journal of the Energy Institute, 107, Article 101187. https://doi.org/10.1016/j.joei.2023.101187

Oil refineries are responsible for ∼5% of total global CO2 emissions and approximately 25–35% of these emissions are released from a single unit called Fluid Catalytic Cracking (FCC). Chemical Looping Combustion (CLC) has been recently proposed as a... Read More about CO2 capture from fluid catalytic crackers via chemical looping combustion: Regeneration of coked catalysts with oxygen carriers.

Development of heavy metal passivators in residue fluid catalytic cracking process (2022)
Journal Article
Salahshour, P., Yavari, M., Güleç, F., Karaca, H., Tarighi, S., & Habibzadeh, S. (2022). Development of heavy metal passivators in residue fluid catalytic cracking process. Journal of Composites and Compounds, 4(13), 186-194. https://doi.org/10.52547/jcc.4.4.3

The advancement of residual fluid catalytic cracking (RFCC) is significantly influenced by the development of heavy metals passivation technology. Resids often include larger concentrations of heavy metals (Ni, V, and Fe) than gas oils, primarily in... Read More about Development of heavy metal passivators in residue fluid catalytic cracking process.

Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes (2022)
Journal Article
Afolabi, I. C., Epelle, E. I., Gunes, B., Güleç, F., & Okolie, J. A. (2022). Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes. Clean Technologies, 4(4), 1227-1241. https://doi.org/10.3390/cleantechnol4040075

Higher heating values (HHV) is a very useful parameter for assessing the design and large-scale operation of biomass-driven energy systems. HHV is conventionally measured experimentally with an adiabatic oxygen bomb calorimeter. This procedure is oft... Read More about Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes.

A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction (2022)
Journal Article
Güleç, F., Williams, O., Kostas, E. T., Samson, A., & Lester, E. (2022). A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction. Energy Conversion and Management, 270, Article 116260. https://doi.org/10.1016/j.enconman.2022.116260

Understanding the suitability of different conversion technologies for different types of biomass feedstocks is crucial in delivering the full valorisation of different types of biomasses. This is novel research which presents an extensive comparativ... Read More about A comprehensive comparative study on the energy application of chars produced from different biomass feedstocks via hydrothermal conversion, pyrolysis, and torrefaction.

Biofuel characteristics of chars produced from rapeseed, whitewood, and seaweed via thermal conversion technologies – Impacts of feedstocks and process conditions (2022)
Journal Article
Gulec, F., Samson, A., Williams, O., Kostas, E. T., & Lester, E. (2022). Biofuel characteristics of chars produced from rapeseed, whitewood, and seaweed via thermal conversion technologies – Impacts of feedstocks and process conditions. Fuel Processing Technology, 238, Article 107492. https://doi.org/10.1016/j.fuproc.2022.107492

Understanding the suitability of different conversion technologies for different types of biomass feedstocks is crucial in delivering the full valorisation of different types of biomass feedstocks. Optimal valorisation pathways can be identified by i... Read More about Biofuel characteristics of chars produced from rapeseed, whitewood, and seaweed via thermal conversion technologies – Impacts of feedstocks and process conditions.

A comprehensive comparative study on methylene blue removal from aqueous solution using biochars produced from rapeseed, whitewood, and seaweed via different thermal conversion technologies (2022)
Journal Article
Güleç, F., Williams, O., Kostas, E. T., Samson, A., Stevens, L. A., & Lester, E. (2022). A comprehensive comparative study on methylene blue removal from aqueous solution using biochars produced from rapeseed, whitewood, and seaweed via different thermal conversion technologies. Fuel, 330, Article 125428. https://doi.org/10.1016/j.fuel.2022.125428

This paper presents, for the first time, a comprehensive comparative analysis of the potential of using biochars from three distinctly different UK-sourced biomass feedstocks, produced via three different thermal processing techniques, to adsorb meth... Read More about A comprehensive comparative study on methylene blue removal from aqueous solution using biochars produced from rapeseed, whitewood, and seaweed via different thermal conversion technologies.

Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications (2022)
Journal Article
Güleç, F., Pekaslan, D., Williams, O., & Lester, E. (2022). Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications. Fuel, 320, Article 123944. https://doi.org/10.1016/j.fuel.2022.123944

Higher heating value (HHV) is a key characteristic for the assessment and selection of biomass feedstocks as a fuel source. The HHV is usually measured using an adiabatic oxygen bomb calorimeter; however, this method can be time consuming and expensi... Read More about Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications.

Prediction of Biomass Pyrolysis Mechanisms and Kinetics: Application of the Kalman Filter (2021)
Journal Article
Güleç, F., Şimşek, E. H., & Tanıker Sarı, H. (2022). Prediction of Biomass Pyrolysis Mechanisms and Kinetics: Application of the Kalman Filter. Chemical Engineering and Technology, 45(1), 167-177. https://doi.org/10.1002/ceat.202100229

In order to predict the pyrolysis mechanisms of four different biomasses (Asbos (Psilocaulon utile), Kraalbos (Galenia africane), Scholtzbos (Pteronia pallens), and palm shell), a novel method called Kalman filter was investigated and the results wer... Read More about Prediction of Biomass Pyrolysis Mechanisms and Kinetics: Application of the Kalman Filter.

Investigation of the hydrodynamics in the regenerator of fluid catalytic cracking unit integrated by chemical looping combustion (2021)
Journal Article
Güleç, F., Erdogan, A., Clough, P. T., & Lester, E. (2021). Investigation of the hydrodynamics in the regenerator of fluid catalytic cracking unit integrated by chemical looping combustion. Fuel Processing Technology, 223, Article 106998. https://doi.org/10.1016/j.fuproc.2021.106998

Oil refineries are responsible for 4–6% of global CO2 emissions, and 20–35% of these emissions released from the regenerator of Fluid Catalytic Cracking (FCC) units, which are the essential units for the conversion of heavier petroleum residues (vacu... Read More about Investigation of the hydrodynamics in the regenerator of fluid catalytic cracking unit integrated by chemical looping combustion.

Hydrothermal conversion of different lignocellulosic biomass feedstocks - Effect of the process conditions on hydrochar structures (2021)
Journal Article
Güleç, F., Riesco, L., Williams, O., Kostas, E. T., Samson, A., & Lester, E. (2021). Hydrothermal conversion of different lignocellulosic biomass feedstocks - Effect of the process conditions on hydrochar structures. Fuel, 302, Article 121166. https://doi.org/10.1016/j.fuel.2021.121166

Five biomass feedstocks (Coffee residues, Rice waste, Whitewood, Zilkha black, and Lignin) were hydrothermally processed in a semi-continuous flow rig using 9 different processing conditions (75, 150, 250 °C, and 1, 50, 240 bar). Solid residues produ... Read More about Hydrothermal conversion of different lignocellulosic biomass feedstocks - Effect of the process conditions on hydrochar structures.

Prediction of sorption enhanced steam methane reforming products from machine learning based soft-sensor models (2020)
Journal Article
Nkulikiyinka, P., Yan, Y., Güleç, F., Manovic, V., & Clough, P. T. (2020). Prediction of sorption enhanced steam methane reforming products from machine learning based soft-sensor models. Energy and AI, 2, Article 100037. https://doi.org/10.1016/j.egyai.2020.100037

Carbon dioxide-abated hydrogen can be synthesised via various processes, one of which is sorption enhanced steam methane reforming (SE-SMR), which produces separated streams of high purity H2 and CO2. Properties of hydrogen and the sorbent material h... Read More about Prediction of sorption enhanced steam methane reforming products from machine learning based soft-sensor models.

Progress in the CO2 Capture Technologies for Fluid Catalytic Cracking (FCC) Units—A Review (2020)
Journal Article
Güleç, F., Meredith, W., & Snape, C. E. (2020). Progress in the CO2 Capture Technologies for Fluid Catalytic Cracking (FCC) Units—A Review. Frontiers in Energy Research, 8, https://doi.org/10.3389/fenrg.2020.00062

© Copyright © 2020 Güleç, Meredith and Snape. Heavy industries including cement, iron and steel, oil refining, and petrochemicals are collectively responsible for about 22% of global CO2 emissions. Among these industries, oil refineries account for 4... Read More about Progress in the CO2 Capture Technologies for Fluid Catalytic Cracking (FCC) Units—A Review.

Demonstrating the applicability of chemical looping combustion for the regeneration of fluid catalytic cracking catalysts (2020)
Journal Article
Güleç, F., Meredith, W., Sun, C. G., & Snape, C. E. (2020). Demonstrating the applicability of chemical looping combustion for the regeneration of fluid catalytic cracking catalysts. Chemical Engineering Journal, 389, Article 124492. https://doi.org/10.1016/j.cej.2020.124492

© 2020 Elsevier B.V. Fluid Catalytic Cracking (FCC) units are responsible for roughly 25% of CO2 emissions from oil refineries, which themselves account for 4–6% of total global CO2 emissions. Although post- and oxy-combustion technologies have been... Read More about Demonstrating the applicability of chemical looping combustion for the regeneration of fluid catalytic cracking catalysts.

Methylation of 2-methylnaphthalene over metal-impregnated mesoporous MCM-41 for the synthesis of 2,6-triad dimethylnaphthalene isomers (2020)
Journal Article
Niftaliyeva, A., Güleç, F., & Karaduman, A. (2020). Methylation of 2-methylnaphthalene over metal-impregnated mesoporous MCM-41 for the synthesis of 2,6-triad dimethylnaphthalene isomers. Research on Chemical Intermediates, 46(4), 2403-2416. https://doi.org/10.1007/s11164-020-04098-8

2,6-Dimethylnaphthalene (2,6-DMN) is one of the key intermediates for the production of polyethylene naphthalate (PEN), which demonstrates superior properties compared with the polyethylene terephthalate. However, the complex synthesis procedure of 2... Read More about Methylation of 2-methylnaphthalene over metal-impregnated mesoporous MCM-41 for the synthesis of 2,6-triad dimethylnaphthalene isomers.

Understanding the liquefaction mechanism of Beypazarı lignite in tetralin with ultraviolet irradiation using discrete time models (2019)
Journal Article
Şimşek, E. H., Güleç, F., & Akçadağ, F. S. (2020). Understanding the liquefaction mechanism of Beypazarı lignite in tetralin with ultraviolet irradiation using discrete time models. Fuel Processing Technology, 198, Article 106227. https://doi.org/10.1016/j.fuproc.2019.106227

This study has proposed four different liquefaction models consisting of both reversible and irreversible reaction steps with three lumped parameters, asphaltenes, preasphaltenes, and oils, for the liquefaction of Turkish lignite (Beypazarı-Çayırhan)... Read More about Understanding the liquefaction mechanism of Beypazarı lignite in tetralin with ultraviolet irradiation using discrete time models.

Sustainable energy saving alternatives in small buildings (2019)
Journal Article
Sher, F., Kawai, A., Güleç, F., & Sadiq, H. (2019). Sustainable energy saving alternatives in small buildings. Sustainable Energy Technologies and Assessments, 32, 92-99. https://doi.org/10.1016/j.seta.2019.02.003

Day lighting significance in architectural designs is well established for enhancing visual comfort, energy-efficiency and low carbon buildings development. Practising the atrium element in the modern architectures has been increasingly popular in re... Read More about Sustainable energy saving alternatives in small buildings.

Selective low temperature chemical looping combustion of higher alkanes with Cu- and Mn- oxides (2019)
Journal Article
Güleç, F., Meredith, W., Sun, C., & Snape, C. E. (2019). Selective low temperature chemical looping combustion of higher alkanes with Cu- and Mn- oxides. Energy, 173, 658-666. https://doi.org/10.1016/j.energy.2019.02.099

Chemical looping combustion (CLC) of n-hexadecane and n-heptane with copper and manganese oxides (CuO and Mn2O3) has been investigated in a fixed bed reactor to reveal the extent to which low temperature CLC can potentially be applicable to hydrocarb... Read More about Selective low temperature chemical looping combustion of higher alkanes with Cu- and Mn- oxides.

A novel approach to CO2 capture in Fluid Catalytic Cracking-Chemical Looping Combustion (2019)
Journal Article
Güleç, F., Meredith, W., Sun, C.-G., & Snape, C. E. (2019). A novel approach to CO2 capture in Fluid Catalytic Cracking-Chemical Looping Combustion. Fuel, 244, 140-150. https://doi.org/10.1016/j.fuel.2019.01.168

Oil refineries collectively account for about 4–6% of global CO2 emissions and Fluid Catalytic Cracking (FCC) units are responsible for roughly 25% of these. Although post-combustion and oxy-combustion have been suggested to capture CO2 released from... Read More about A novel approach to CO2 capture in Fluid Catalytic Cracking-Chemical Looping Combustion.

A kinetic study on methylation of naphthalene over Fe/ZSM-5 zeolite catalysts (2017)
Journal Article
Güleç, F., Özen, A., Niftaliyeva, A., Aydın, A., Şimşek, E. H., & Karaduman, A. (2018). A kinetic study on methylation of naphthalene over Fe/ZSM-5 zeolite catalysts. Research on Chemical Intermediates, 44(1), 55-67. https://doi.org/10.1007/s11164-017-3090-5

2,6-Dimethylnaphthalene is an important dimethylnaphthalene isomer which can be used in the production of polyethylene naphthalate. The novelty of this study is to reveal Langmuir–Hinshelwood and Eley–Rideal reaction rate equations for the methylatio... Read More about A kinetic study on methylation of naphthalene over Fe/ZSM-5 zeolite catalysts.

Application of Kalman filter to determination of coal liquefaction mechanisms using discrete time models (2017)
Journal Article
Şimşek, E. H., Güleç, F., & Kavuştu, H. (2017). Application of Kalman filter to determination of coal liquefaction mechanisms using discrete time models. Fuel, 207, 814-820. https://doi.org/10.1016/j.fuel.2017.06.004

Seven different liquefaction mechanisms that consist of reversible and irreversible steps are suggested for a Turkish lignite (Tunçbilek) in tetralin with the use of microwave heating. Compliance of the proposed mechanisms are determined by forming f... Read More about Application of Kalman filter to determination of coal liquefaction mechanisms using discrete time models.