DR FATIH GULEC FATIH.GULEC1@NOTTINGHAM.AC.UK
Assistant Professor in Chemical and Environmental Engineering
Exploring the Utilisation of Natural Biosorbents for Effective Methylene Blue Removal
Güleç, Fatih; Williams, Orla; Samson, Abby; Kostas, Emily; Stevens, Lee A.; Lester, Edward
Authors
Dr ORLA WILLIAMS ORLA.WILLIAMS@NOTTINGHAM.AC.UK
Assistant Professor
Abby Samson
Emily Kostas
LEE STEVENS LEE.STEVENS@NOTTINGHAM.AC.UK
Senior Research Fellow
EDWARD LESTER EDWARD.LESTER@NOTTINGHAM.AC.UK
Lady Trent Professor
Abstract
This paper presents a comprehensive analysis of the adsorbent capacity of five distinctly different biosorbents derived from untreated biomasses. The optimal adsorption capacity of seaweed (Laminaria digitata), horse chestnut husk, hazelnut husk, rapeseed residue, and whitewood to remove methylene blue (MB) dye was assessed by analysing the effects of particle size, pH, temperature, and initial dye concentrations. Furthermore, the adsorption kinetics, isotherms, and adsorption thermodynamics were investigated. The results showed that relatively high MB adsorption capacity was achieved by Laminaria digitata (~180 mg/g), in addition to a reasonable MB adsorption capacity of horse chestnut husk (~130 mg/g), hazelnut husk (~110 mg/g), and rapeseed residue (~80 mg/g). However, whitewood provides a relatively low adsorption capacity of below 20 mg/g. The best fit with experimental results regardless of biosorbent type was a pseudo-second-order kinetic model with the lowest mean absolute percentage error (ε, MAPE < 2.5%) and the highest correlation coefficients (R2 > 0.99). Although the pseudo-second-order kinetic model is often associated with chemisorption, the low enthalpy values (<29.30 kJ/mol) typically suggest that the adsorption process is more characteristic of physisorption, which involves weaker van der Waals forces rather than the stronger covalent bonds of chemisorption. This proposed a multi-step adsorption process involving both physisorption and chemisorption. The adsorption isotherm of Langmuir showed superior fitting results for Laminaria digitata and hazelnut husk. In contrast, rapeseed residue and horse chestnut husk fit better with the Freundlich adsorption isotherm. The Langmuir adsorption isotherms showed a maximum adsorption capacity of ~500 mg/g for Laminaria digitata, followed by horse chestnut husk (~137 mg/g), hazelnut husk (~120 mg/g), and rapeseed residue (~85 mg/g). The Gibbs free energy was negative for Laminaria digitata < horse chestnut husk < hazelnut husk < 0, which suggests that the removal of MB is thermodynamically favourable, as the adsorption process occurs spontaneously. The results of the study indicate that MB dye removal using untreated biomasses has the potential to be a low-cost valorisation option in the holistic whole life cycle valorisation pathway for Laminaria digitata, horse chestnut husk, and hazelnut husk.
Citation
Güleç, F., Williams, O., Samson, A., Kostas, E., Stevens, L. A., & Lester, E. (2023). Exploring the Utilisation of Natural Biosorbents for Effective Methylene Blue Removal. Applied Sciences, 14(1), Article 81. https://doi.org/10.3390/app14010081
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 12, 2023 |
Online Publication Date | Dec 21, 2023 |
Publication Date | Dec 21, 2023 |
Deposit Date | Dec 20, 2023 |
Publicly Available Date | Jan 3, 2024 |
Journal | Applied Sciences (Switzerland) |
Electronic ISSN | 2076-3417 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 14 |
Issue | 1 |
Article Number | 81 |
DOI | https://doi.org/10.3390/app14010081 |
Keywords | Fluid Flow and Transfer Processes, Computer Science Applications, Process Chemistry and Technology, General Engineering, Instrumentation, General Materials Science |
Public URL | https://nottingham-repository.worktribe.com/output/28710196 |
Publisher URL | https://www.mdpi.com/2076-3417/14/1/81 |
Additional Information | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Files
applsci-14-00081
(3.2 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
A novel approach to CO2 capture in Fluid Catalytic Cracking-Chemical Looping Combustion
(2019)
Journal Article
Progress in the CO2 Capture Technologies for Fluid Catalytic Cracking (FCC) Units—A Review
(2020)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search