Skip to main content

Research Repository

Advanced Search

Professor MICHELE DEGANO's Outputs (140)

Effects of the Floating Capacitor Voltage on the Torque-Speed Characteristic of an Open-End Winding Synchronous Reluctance Motor Drive (2025)
Journal Article
Riccio, J., Gemma, F., Rovere, L., Tresca, G., Nardo, M. D., Odhano, S., Degano, M., & Zanchetta, P. (2025). Effects of the Floating Capacitor Voltage on the Torque-Speed Characteristic of an Open-End Winding Synchronous Reluctance Motor Drive. IEEE Transactions on Industry Applications, https://doi.org/10.1109/TIA.2025.3528879

This manuscript investigates the torque-speed characteristics of a synchronous reluctance motor drive with an open-end winding (OEW) configuration. The machine is powered by standard two-level voltage source inverters (VSI), one supplied by a DC powe... Read More about Effects of the Floating Capacitor Voltage on the Torque-Speed Characteristic of an Open-End Winding Synchronous Reluctance Motor Drive.

PDIV Modeling for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors at Different Cruising Altitudes (2024)
Presentation / Conference Contribution
Naderiallaf, H., Gerada, C., Degano, M., & Gerada, D. (2024, September). PDIV Modeling for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors at Different Cruising Altitudes. Presented at 2024 International Conference on Electrical Machines (ICEM), Torino, Italy

This study develops a predictive model for partial discharge inception voltage (PDIV) in turn-to-turn insulation of form-wound windings for inverter-fed motors considering a range of altitudes, from ground to cruise levels. Emphasis is placed on the... Read More about PDIV Modeling for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors at Different Cruising Altitudes.

Distributed Magnetic Equivalent Circuit Modelling of Synchronous Machines (2024)
Journal Article
Korman, O., Nardo, M. D., Riccio, J., Murataliyev, M., Degano, M., & Gerada, C. (2024). Distributed Magnetic Equivalent Circuit Modelling of Synchronous Machines. IEEE Transactions on Industry Applications, https://doi.org/10.1109/TIA.2024.3462898

This paper proposes a highly accurate and computationally efficient distributed magnetic equivalent circuit (DMEC) model for synchronous electric machines. The model - based on a two directional flux paths cell element - is derived in a general fashi... Read More about Distributed Magnetic Equivalent Circuit Modelling of Synchronous Machines.

Design and Evaluation of Matrix Rotor Induction Motor for High-Torque Low-Speed Applications (2024)
Journal Article
Madariaga, C., Gallardo, C., Reyes Juan A. Tapia, N., Jara, W., & Degano, M. (2024). Design and Evaluation of Matrix Rotor Induction Motor for High-Torque Low-Speed Applications. IEEE Transactions on Energy Conversion, https://doi.org/10.1109/TEC.2024.3426480

This paper presents the design and evaluation of a new axial-flux low-speed and high-torque matrix-rotor induction machine. Iron wires embedded in a cupper matrix comprise the solid rotor structure. Specific design and sizing equations are provided f... Read More about Design and Evaluation of Matrix Rotor Induction Motor for High-Torque Low-Speed Applications.

Fast Flux Maps Computation of Synchronous Reluctance Machines With and Without Permanent Magnets Assistance (2024)
Journal Article
Gallicchio, G., Nardo, M. D., Cupertino, F., Varvolik, V., Buticchi, G., Degano, M., & Gerada, C. (2024). Fast Flux Maps Computation of Synchronous Reluctance Machines With and Without Permanent Magnets Assistance. IEEE Transactions on Industry Applications, 60(5), 6725-6735. https://doi.org/10.1109/TIA.2024.3403967

This paper proposes a computational efficient and accurate hybrid analytical-finite element (FE) performance prediction methodology for synchronous reluctance (SyR) machines. The hybrid procedure consists in solving the d- and q-axis magnetic equival... Read More about Fast Flux Maps Computation of Synchronous Reluctance Machines With and Without Permanent Magnets Assistance.

Automated Maximum Torque per Ampere Identification for Synchronous Reluctance Machines with Limited Flux Linkage Information (2024)
Journal Article
Wang, S., Varvolik, V., Bao, Y., Aboelhassan, A., Degano, M., Buticchi, G., & Zhang, H. (2024). Automated Maximum Torque per Ampere Identification for Synchronous Reluctance Machines with Limited Flux Linkage Information. Machines, 12(2), Article 96. https://doi.org/10.3390/machines12020096

The synchronous reluctance machine is well-known for its highly nonlinear magnetic saturation and cross-saturation characteristics. For high performance and high-efficiency control, the flux-linkage maps and maximum torque per ampere table are of par... Read More about Automated Maximum Torque per Ampere Identification for Synchronous Reluctance Machines with Limited Flux Linkage Information.

Comprehensive Modulation Strategies for Synchronous Reluctance Motor Drives Used in Weak Grids (2024)
Journal Article
Wang, S., Prystupa, D., Bao, Y., Varvolik, V., Buticchi, G., Zhang, H., & Degano, M. (2024). Comprehensive Modulation Strategies for Synchronous Reluctance Motor Drives Used in Weak Grids. Energies, 17(3), Article 615. https://doi.org/10.3390/en17030615

Synchronous reluctance machines are considered a cost-effective solution for several industrial applications and present potential efficiency benefits compared to induction motors. In industrial applications, power supply oscillations can lead to sho... Read More about Comprehensive Modulation Strategies for Synchronous Reluctance Motor Drives Used in Weak Grids.

Fillet Radius Impact of Rectangular Insulated Wires on PDIV for Turn-to-Turn Insulation of Inverter-Fed Motors (2024)
Journal Article
Naderiallaf, H., Degano, M., Gerada, C., & Gerada, D. (2024). Fillet Radius Impact of Rectangular Insulated Wires on PDIV for Turn-to-Turn Insulation of Inverter-Fed Motors. IEEE Transactions on Dielectrics and Electrical Insulation, 31(4), 2084-2093. https://doi.org/10.1109/tdei.2024.3355032

This contribution elucidates the impact of the fillet radius, a geometric feature of rectangular insulated wires not commonly considered, on the partial discharge inception voltage (PDIV) in low-voltage machine turn-to-turn winding insulation. Initia... Read More about Fillet Radius Impact of Rectangular Insulated Wires on PDIV for Turn-to-Turn Insulation of Inverter-Fed Motors.

Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines (2024)
Journal Article
Wu, J., Korman, O., Di Nardo, M., Degano, M., Gerada, C., Ashcroft, I., J.M. Hague, R., & T. Aboulkhair, N. (2024). Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines. IEEE Access, 12, 138921-138931. https://doi.org/10.1109/ACCESS.2024.3436643

Powder Bed Fusion - Laser Beam (PBF-LB), a form of additive manufacturing (AM) for Nd-Fe-B permanent magnets, is attracting substantial interest for its ability to process functional magnetic materials while capitalizing on AM's design flexibility an... Read More about Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines.

Modeling Air Pressure Impact on PDIV for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors under Different Voltage Waveform Excitations (2024)
Journal Article
Naderiallaf, H., Degano, M., & Gerada, C. (2024). Modeling Air Pressure Impact on PDIV for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors under Different Voltage Waveform Excitations. IEEE Access, 12, 176232-176246. https://doi.org/10.1109/ACCESS.2024.3506053

This study investigates the partial discharge inception voltage (PDIV) in turn-to-turn insulation of form-wound windings in inverter-fed motors under nine different air pressures, ranging from 1013 mbar to 10 mbar. The research evaluates three voltag... Read More about Modeling Air Pressure Impact on PDIV for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors under Different Voltage Waveform Excitations.

Reduced Computational Burden of Modulated Model-Predictive Control for Synchronous Reluctance Motor Drive Applications (2023)
Presentation / Conference Contribution
Riccio, J., Karamanakos, P., Degano, M., Gerada, C., & Zanchetta, P. (2023, October). Reduced Computational Burden of Modulated Model-Predictive Control for Synchronous Reluctance Motor Drive Applications. Presented at 2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023, Nashville, TN. USA

This paper introduces a novel geometric approach to significantly reduce the computational burden of modulated predictive controllers while maintaining the same steady-state performance and satisfactory dynamic behavior. The proposed geometric method... Read More about Reduced Computational Burden of Modulated Model-Predictive Control for Synchronous Reluctance Motor Drive Applications.

Assessment of Edgewise Insulated Wire Bend Radius Impact on Dielectric Properties of Turn-to-Turn Insulation through Thermal Ageing (2023)
Journal Article
Naderiallaf, H., Degano, M., & Gerada, C. (2023). Assessment of Edgewise Insulated Wire Bend Radius Impact on Dielectric Properties of Turn-to-Turn Insulation through Thermal Ageing. IEEE Transactions on Dielectrics and Electrical Insulation, https://doi.org/10.1109/TDEI.2023.3309780

This study aims to evaluate the impact of the bending radius of edgewise insulated wires on dielectric properties such as partial discharge inception voltage (PDIV), partial discharge extinction voltage (PDEV), dielectric dissipation factor (DDF), an... Read More about Assessment of Edgewise Insulated Wire Bend Radius Impact on Dielectric Properties of Turn-to-Turn Insulation through Thermal Ageing.

PDIV Modelling for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors through Thermal Ageing (2023)
Journal Article
Naderiallaf, H., Degano, M., & Gerada, C. (2023). PDIV Modelling for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors through Thermal Ageing. IEEE Transactions on Dielectrics and Electrical Insulation, 1-10. https://doi.org/10.1109/tdei.2023.3307048

This contribution develops the partial discharge inception voltage (PDIV)-FEM-based model based on Schumann’s streamer inception criterion (SCSIC) with respect to thermal ageing time (TAGT) or the insulation lifetime for the turn-to-turn insulation o... Read More about PDIV Modelling for Rectangular Wire Turn-to-Turn Insulation of Inverter-Fed Motors through Thermal Ageing.

Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties (2023)
Journal Article
Wu, J., Aboulkhair, N. T., Robertson, S., Zhou, Z., Bagot, P. A., Moody, M. P., Degano, M., Ashcroft, I., & Hague, R. J. (2023). Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties. Acta Materialia, 259, 119239. https://doi.org/10.1016/j.actamat.2023.119239

Laser powder-bed fusion (PBF-LB), a class of additive manufacturing (AM), has attracted wide interest in the production of Nd-Fe-B permanent magnets, benefiting from the minimisation of waste of rare-earth elements and the post-processing requirement... Read More about Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties.

Fast Assessment of Rotor Barrier Dimensional Allowances in Synchronous Reluctance Machines (2023)
Journal Article
Madariaga, C., Gallardo, C., Tapia, J. A., Jara, W., Escobar, A., & Degano, M. (2023). Fast Assessment of Rotor Barrier Dimensional Allowances in Synchronous Reluctance Machines. IEEE Access, 11, 58349-58358. https://doi.org/10.1109/access.2023.3284753

Tolerance analysis on synchronous reluctance machines (SynRM) is mandatory if accurate refinements of the rotor structure are adopted, a must for low-ripple applications However, the impact of manufacturing/dimensional tolerances or material degradat... Read More about Fast Assessment of Rotor Barrier Dimensional Allowances in Synchronous Reluctance Machines.

Rotor Vibration Control using Multi-Three-Phase Permanent Magnet Synchronous Machines (2023)
Presentation / Conference Contribution
Di Nardo, M., Ilkhani, M. R., Wang, M., Degano, M., Gerada, C., Sala, G., Spadi, T., Gaertner, M., Brecher, C., & Hoppert, M. (2023, May). Rotor Vibration Control using Multi-Three-Phase Permanent Magnet Synchronous Machines. Presented at 2023 IEEE International Electric Machines & Drives Conference (IEMDC), San Francisco, USA

This paper investigates the possibility to control the radial displacements of the shaft of an electrical machine equipped with a multi-three-phase winding arrangement with the aim of reducing the related vibrations. A comprehensive dynamic modeling... Read More about Rotor Vibration Control using Multi-Three-Phase Permanent Magnet Synchronous Machines.

Design of an aircraft generator with radial force control. (2023)
Journal Article
Brecher, C., Neus, S., Gärtner, M., Eckel, H.-M., Hoppert, M., James, B., Gerada, C., Degano, M., Ilkhani, M. R., & Di Nardo, M. (2023). Design of an aircraft generator with radial force control. Open Research Europe, 2, Article 73. https://doi.org/10.12688/openreseurope.14684.3

With the increasing electrical energy demands in aviation propulsion systems, the increase in the onboard generators’ power density is inevitable. During the flight, forces coming from the gearbox or gyroscopic forces generated by flight manoeuvres l... Read More about Design of an aircraft generator with radial force control..

Design of an aircraft generator with radial force control [version 3; peer review: 2 approved] (2023)
Journal Article
Brecher, C., Neus, S., Gärtner, M., Eckel, H.-M., Hoppert, M., James, B., Gerada, C., Degano, M., Ilkhani, M. R., & Di Nardo, M. (2023). Design of an aircraft generator with radial force control [version 3; peer review: 2 approved]. Open Research Europe, Article 73. https://doi.org/10.12688/openreseurope.14684.2

With the increasing electrical energy demands in aviation propulsion systems, the increase in the onboard generators’ power density is inevitable. During the flight, forces coming from the gearbox or gyroscopic forces generated by flight manoeuvres l... Read More about Design of an aircraft generator with radial force control [version 3; peer review: 2 approved].

Prediction and Diagnosis for Unsteady Electromagnetic Vibroacoustic of IPMSMs for Electric Vehicles Considering Rotor Step Skewing and Current Harmonics (2023)
Journal Article
Zhou, S., Ma, C., Zhang, N., Guo, Y., Degano, M., Gerada, C., Bu, F., Zeng, J., Li, Q., & An, Y. (2024). Prediction and Diagnosis for Unsteady Electromagnetic Vibroacoustic of IPMSMs for Electric Vehicles Considering Rotor Step Skewing and Current Harmonics. Journal of vibration engineering & technologies, 12(1), 821-836. https://doi.org/10.1007/s42417-023-00878-9

Purpose: This study provides a detailed investigation on the prediction and diagnosis of unsteady electromagnetic vibroacoustic performance of IPMSMs for electric vehicles under typical unsteady operating conditions with consideration of rotor step s... Read More about Prediction and Diagnosis for Unsteady Electromagnetic Vibroacoustic of IPMSMs for Electric Vehicles Considering Rotor Step Skewing and Current Harmonics.

Radical technology innovations for high‐speed transport; ePlanes to replace rail? (2023)
Journal Article
Riley, P. H., Degano, M., & Gerada, C. (2023). Radical technology innovations for high‐speed transport; ePlanes to replace rail?. IET Electrical Systems in Transportation, 13(1), Article 12061. https://doi.org/10.1049/els2.12061

This paper evaluates various modes of transport against the dual requirements of Net-Zero carbon emissions and user convenience, in particular, speed of travel and cost of transportation. Results show that when operated across a whole country, batter... Read More about Radical technology innovations for high‐speed transport; ePlanes to replace rail?.