Nutritional Implications of Alternative Proteins: A commentary
(2025)
Journal Article
Davis, U., Bobo, J., Wilson, P., Noy, P., Mansilla Lobos, R., Long, G., Welham, S., Harvey, J., Lukinova, E., Nica-Avram, G., Smith, G., Salt, D., Smith, A., & Goulding, J. (in press). Nutritional Implications of Alternative Proteins: A commentary. Public Health Nutrition,
Dr Gavin Smith's Outputs (18)
How the Predictors of Math Achievement Change Over Time: A Longitudinal Machine Learning Approach (2024)
Journal Article
Lavelle-Hill, R., Frenzel, A. C., Goetz, T., Lichtenfeld, S., Marsh, H. W., Pekrun, R., Sakaki, M., Smith, G., & Murayama, K. (2024). How the Predictors of Math Achievement Change Over Time: A Longitudinal Machine Learning Approach. Journal of Educational Psychology, 116(8), 1383–1403. https://doi.org/10.1037/edu0000863Researchers have focused extensively on understanding the factors influencing students’ academic achievement over time. However, existing longitudinal studies have often examined only a limited number of predictors at one time, leaving gaps in our kn... Read More about How the Predictors of Math Achievement Change Over Time: A Longitudinal Machine Learning Approach.
Detecting iodine deficiency risks from dietary transitions using shopping data (2024)
Journal Article
Mansilla, R., Long, G., Welham, S., Harvey, J., Lukinova, E., Nica-Avram, G., Smith, G., Salt, D., Smith, A., & Goulding, J. (2024). Detecting iodine deficiency risks from dietary transitions using shopping data. Scientific Reports, 14(1), Article 1017. https://doi.org/10.1038/s41598-023-50180-7Plant-based product replacements are gaining popularity. However, the long-term health implications remain poorly understood, and available methods, though accurate, are expensive and burdensome, impeding the study of sufficiently large cohorts. To i... Read More about Detecting iodine deficiency risks from dietary transitions using shopping data.
Assessing the value of integrating national longitudinal shopping data into respiratory disease forecasting models (2023)
Journal Article
Dolan, E., Goulding, J., Marshall, H., Smith, G., Long, G., & Tata, L. J. (2023). Assessing the value of integrating national longitudinal shopping data into respiratory disease forecasting models. Nature Communications, 14, Article 7258. https://doi.org/10.1038/s41467-023-42776-4The COVID-19 pandemic led to unparalleled pressure on healthcare services. Improved healthcare planning in relation to diseases affecting the respiratory system has consequently become a key concern. We investigated the value of integrating sales of... Read More about Assessing the value of integrating national longitudinal shopping data into respiratory disease forecasting models.
Identifying and understanding dietary transitions and nutrient deficiency from loyalty card digital footprints (2023)
Journal Article
Mansilla, R., Long, G., Welham, S., Harvey, J., Lukinova, E., Nica-Avram, G., Smith, G., Smith, A., & Goulding, J. (2023). Identifying and understanding dietary transitions and nutrient deficiency from loyalty card digital footprints. International Journal of Population Data Science, 8(3), https://doi.org/10.23889/ijpds.v8i3.2266
Bundle entropy as an optimized measure of consumers' systematic product choice combinations in mass transactional data (2022)
Presentation / Conference Contribution
Mansilla, R., Smith, G., Smith, A., & Goulding, J. (2022, December). Bundle entropy as an optimized measure of consumers' systematic product choice combinations in mass transactional data. Presented at 2022 IEEE International Conference on Big Data (Big Data), Osaka, JapanUnderstanding and measuring the predictability of consumer purchasing (basket) behaviour is of significant value. While predictability measures such as entropy have been well studied and leveraged in other sectors, their development and application t... Read More about Bundle entropy as an optimized measure of consumers' systematic product choice combinations in mass transactional data.
Using mobile money data and call detail records to explore the risks of urban migration in Tanzania (2022)
Journal Article
Lavelle-Hill, R., Harvey, J., Smith, G., Mazumder, A., Ellis, M., Mwantimwa, K., & Goulding, J. (2022). Using mobile money data and call detail records to explore the risks of urban migration in Tanzania. EPJ Data Science, 11(8), Article 28. https://doi.org/10.1140/epjds/s13688-022-00340-yUnderstanding what factors predict whether an urban migrant will end up in a deprived neighbourhood or not could help prevent the exploitation of vulnerable individuals. This study leveraged pseudonymized mobile money interactions combined with cell... Read More about Using mobile money data and call detail records to explore the risks of urban migration in Tanzania.
Machine learning methods for “wicked” problems: exploring the complex drivers of modern slavery (2021)
Journal Article
Lavelle-Hill, R., Smith, G., Mazumder, A., Landman, T., & Goulding, J. (2021). Machine learning methods for “wicked” problems: exploring the complex drivers of modern slavery. Humanities and Social Sciences Communications, 8, Article 274. https://doi.org/10.1057/s41599-021-00938-zForty million people are estimated to be in some form of modern slavery across the globe. Understanding the factors that make any particular individual or geographical region vulnerable to such abuse is essential for the development of effective inte... Read More about Machine learning methods for “wicked” problems: exploring the complex drivers of modern slavery.
Exogenous cognition and cognitive state theory: The plexus of consumer analytics and decision-making (2020)
Journal Article
Smith, A., Harvey, J., Goulding, J., Smith, G., & Sparks, L. (2020). Exogenous cognition and cognitive state theory: The plexus of consumer analytics and decision-making. Marketing Theory, 21(1), 53-74. https://doi.org/10.1177/1470593120964947We develop the concept of exogenous cognition (ExC) as a specific manifestation of an external cognitive system (ECS). Exogenous cognition describes the technological and algorithmic extension of (and annexation of) cognition in a consumption context... Read More about Exogenous cognition and cognitive state theory: The plexus of consumer analytics and decision-making.
Psychological and Demographic Predictors of Plastic Bag Consumption in Transaction Data (2020)
Journal Article
Lavelle-Hill, R., Goulding, J., Smith, G., Clarke, D., & Bibby, P. (2020). Psychological and Demographic Predictors of Plastic Bag Consumption in Transaction Data. Journal of Environmental Psychology, 72, Article 101473. https://doi.org/10.1016/j.jenvp.2020.101473Despite the success of plastic bag charges in the UK, there are still around a billion single-use plastic bags bought each year in England alone, and the government have made plans to increase the levy from 5 to 10 pence. Previous research has identi... Read More about Psychological and Demographic Predictors of Plastic Bag Consumption in Transaction Data.
FIMS: Identifying, Predicting and Visualising Food Insecurity (2020)
Presentation / Conference Contribution
Lucas, B., Smith, A., Smith, G., Perrat, B., Nica-Avram, G., Harvey, J., & Goulding, J. (2020, April). FIMS: Identifying, Predicting and Visualising Food Insecurity. Presented at The Web Conference 2020 - Companion of the World Wide Web Conference, WWW 2020, Taipei TaiwanFood insecurity is a persistent and pernicious problem in the UK. Due to logistical challenges, national food insecurity statistics are unmeasured by government bodies - and this lack of data leads to any local estimates that do exist being routinely... Read More about FIMS: Identifying, Predicting and Visualising Food Insecurity.
The unbanked and poverty: predicting area-level socio-economic vulnerability from M-Money transactions (2018)
Presentation / Conference Contribution
Engelmann, G., Smith, G., & Goulding, J. (2018, December). The unbanked and poverty: predicting area-level socio-economic vulnerability from M-Money transactions. Presented at 2018 IEEE international Conference on Big Data, Seattle, USAEmerging economies around the world are often characterized by governments and institutions struggling to keep key demographic data streams up to date. A demographic of interest particularly linked to social vulnerability is that of poverty and socio... Read More about The unbanked and poverty: predicting area-level socio-economic vulnerability from M-Money transactions.
A novel symbolization technique for time-series outlier detection (2015)
Presentation / Conference Contribution
Smith, G., & Goulding, J. A novel symbolization technique for time-series outlier detection. Presented at 2015 IEEE International Conference on Big DataThe detection of outliers in time series data is a core component of many data-mining applications and broadly applied in industrial applications. In large data sets algorithms that are efficient in both time and space are required. One area where sp... Read More about A novel symbolization technique for time-series outlier detection.
AMP: a new time-frequency feature extraction method for intermittent time-series data (2015)
Presentation / Conference Contribution
Barrack, D. S., Goulding, J., Hopcraft, K., Preston, S., & Smith, G. AMP: a new time-frequency feature extraction method for intermittent time-series data. Presented at 1st International Workshop on Mining and Learning from Time Series (MiLeTS)The characterisation of time-series data via their most salient features is extremely important in a range of machine learning task, not least of all with regards to classification and clustering. While there exist many feature extraction techniques... Read More about AMP: a new time-frequency feature extraction method for intermittent time-series data.
Modelling of building interiors with mobile phone sensor data (2015)
Journal Article
Rosser, J., Morley, J., & Smith, G. (2015). Modelling of building interiors with mobile phone sensor data. ISPRS International Journal of Geo-Information, 4(2), https://doi.org/10.3390/ijgi4020989Creating as-built plans of building interiors is a challenging task. In this paper we present a semi-automatic modelling system for creating residential building interior plans and their integration with existing map data to produce building models.... Read More about Modelling of building interiors with mobile phone sensor data.
The potential of electromyography to aid personal navigation (2014)
Presentation / Conference Contribution
Pinchin, J., Smith, G., Hill, C., Moore, T., & Loram, I. The potential of electromyography to aid personal navigation. Presented at 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2014)This paper reports on research to explore the potential for using electromyography (EMG) measurements in pedestrian navigation. The aim is to investigate whether the relationship between human motion and the activity of skeletal muscles in the leg mi... Read More about The potential of electromyography to aid personal navigation.
A refined limit on the predictability of human mobility (2014)
Presentation / Conference Contribution
Smith, G., Wieser, R., Goulding, J., & Barrack, D. A refined limit on the predictability of human mobility. Presented at 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom)It has been recently claimed that human movement is highly predictable. While an upper bound of 93% predictability was shown, this was based upon human movement trajectories of very high spatiotemporal granularity. Recent studies reduced this spatiot... Read More about A refined limit on the predictability of human mobility.
Towards optimal symbolization for time series comparisons (2013)
Presentation / Conference Contribution
Smith, G., Goulding, J., & Barrack, D. Towards optimal symbolization for time series comparisons. Presented at IEEE 13th International Conference on Data Mining Workshops (ICDMW 2013)The abundance and value of mining large time series data sets has long been acknowledged. Ubiquitous in fields ranging from astronomy, biology and web science the size and number of these datasets continues to increase, a situation exacerbated by the... Read More about Towards optimal symbolization for time series comparisons.