Skip to main content

Research Repository

Advanced Search

Outputs (9)

The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen acetobacterium woodii (2018)
Journal Article
Westphal, L., Wiechmann, A., Baker, J., Minton, N. P., & Müller, V. (2018). The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen acetobacterium woodii. Journal of Bacteriology, 200(21), https://doi.org/10.1128/JB.00357-18

© 2018 American Society for Microbiology. The Rnf complex is a respiratory enzyme that catalyzes the oxidation of reduced ferredoxin to the reduction of NAD + , and the negative free energy change of this reaction is used to generate a transmembrane... Read More about The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen acetobacterium woodii.

Gsmodutils: A python based framework for test-driven genome scale metabolic model development (2018)
Other
Gilbert, J. P., Pearcy, N., Norman, R., Millat, T., Winzer, K., King, J., …Twycross, J. (2018). Gsmodutils: A python based framework for test-driven genome scale metabolic model development

Motivation Genome scale metabolic models (GSMMs) are increasingly important for systems biology and metabolic engineering research as they are capable of simulating complex steady-state behaviour. Constraints based models of this form can include tho... Read More about Gsmodutils: A python based framework for test-driven genome scale metabolic model development.

Functional genetic elements for controlling gene expression in Cupriavidus necator H16 (2018)
Journal Article
Alagesan, S., Hanko, E. K., Malys, N., Ehsaan, M., Winzer, K., & Minton, N. P. (2018). Functional genetic elements for controlling gene expression in Cupriavidus necator H16. Applied and Environmental Microbiology, https://doi.org/10.1128/AEM.00878-18

A robust and predictable control of gene expression plays an important role in synthetic biology and biotechnology applications. Development and quantitative evaluation of functional genetic elements such as constitutive and inducible promoters, as w... Read More about Functional genetic elements for controlling gene expression in Cupriavidus necator H16.

Effect of antibiotic treatment on the formation of non-spore Clostridium difficile persister-like cells (2018)
Journal Article
Álvarez, R., Inostroza, O., Garavaglia, M., Minton, N. P., Paredes-Sabja, D., & Gil, F. (2018). Effect of antibiotic treatment on the formation of non-spore Clostridium difficile persister-like cells. Journal of Antimicrobial Chemotherapy, 73(9), 2396-2399. https://doi.org/10.1093/jac/dky186

Background: The spore is the virulence factor identified to be involved in the recurrence of the disease caused by Clostridium difficile. Objectives: To demonstrate that lethal antibiotic concentrations induce the appearance of C. difficile persister... Read More about Effect of antibiotic treatment on the formation of non-spore Clostridium difficile persister-like cells.

The butanol producing microbe Clostridium beijerinckii NCIMB 14988 manipulated using forward and reverse genetic tools (2018)
Journal Article
Little, G. T., Willson, B. J., Heap, J. T., Winzer, K., & Minton, N. P. (2018). The butanol producing microbe Clostridium beijerinckii NCIMB 14988 manipulated using forward and reverse genetic tools. Biotechnology Journal, https://doi.org/10.1002/biot.201700711

The solventogenic anaerobe Clostridium beijerinckii has potential for use in the sustainable bioconversion of plant-derived carbohydrates into solvents, such as butanol or acetone. However, relatively few strains have been extensively characterised e... Read More about The butanol producing microbe Clostridium beijerinckii NCIMB 14988 manipulated using forward and reverse genetic tools.

A transcription factor-based biosensor for detection of itaconic acid (2018)
Journal Article
Hanko, E. K., Minton, N. P., & Malys, N. (2018). A transcription factor-based biosensor for detection of itaconic acid. ACS Synthetic Biology, 7(5), 1436–1446. https://doi.org/10.1021/acssynbio.8b00057

Itaconic acid is an important platform chemical that can easily be incorporated into polymers and has the potential to replace petrochemical-based acrylic or methacrylic acid. A number of microorganisms have been developed for the biosynthesis of ita... Read More about A transcription factor-based biosensor for detection of itaconic acid.

Quantitative isotope-dilution high-resolution-mass-apectrometry analysis of multiple intracellular metabolites in Clostridium autoethanogenum with uniformly 13C-labeled standards derived from Spirulina (2018)
Journal Article
Schatschneider, S., Abdelrazig, S. M., Safo, L., Henstra, A. M., Millat, T., Kim, D., …Barrett, D. A. (2018). Quantitative isotope-dilution high-resolution-mass-apectrometry analysis of multiple intracellular metabolites in Clostridium autoethanogenum with uniformly 13C-labeled standards derived from Spirulina. Analytical Chemistry, 90(7), https://doi.org/10.1021/acs.analchem.7b04758

We have investigated the applicability of commercially available lyophilized spirulina (Arthrospira platensis), a microorganism uniformly labeled with 13C, as a readily accessible source of multiple 13C-labeled metabolites suitable as internal standa... Read More about Quantitative isotope-dilution high-resolution-mass-apectrometry analysis of multiple intracellular metabolites in Clostridium autoethanogenum with uniformly 13C-labeled standards derived from Spirulina.

Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas (2018)
Journal Article
Humphreys, C. M., & Minton, N. P. (in press). Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Current Opinion in Biotechnology, 50, https://doi.org/10.1016/j.copbio.2017.12.023

The future sustainable production of chemicals and fuels from non-petrochemical sources, while at the same time reducing greenhouse gas (GHG) emissions, represent two of society's greatest challenges. Microbial chassis able to grow on waste carbon mo... Read More about Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas.

Upscaling Diffusion Through First-Order Volumetric Sinks: A Homogenization of Bacterial Nutrient Uptake (2018)
Journal Article
Dalwadi, M. P., Wang, Y., King, J. R., & Minton, N. P. (2018). Upscaling Diffusion Through First-Order Volumetric Sinks: A Homogenization of Bacterial Nutrient Uptake. SIAM Journal on Applied Mathematics, 78(3), 1300-1329. https://doi.org/10.1137/17m1138625

In mathematical models that include nutrient delivery to bacteria, it is prohibitively expensive to include a pointwise nutrient uptake within small bacterial regions over bioreactor length-scales, and so such models often impose an effective uptake... Read More about Upscaling Diffusion Through First-Order Volumetric Sinks: A Homogenization of Bacterial Nutrient Uptake.