Skip to main content

Research Repository

Advanced Search

Professor SIMON AVERY's Outputs (8)

Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening (2025)
Presentation / Conference Contribution
Yong, L. X., Zhou, Z., Vallières, C., He, Y., Cuzzucoli Crucitti, V., Alexander, M. R., Avery, S., Wildman, R., & Irvine, D. (2024, August). Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening. Presented at International Conference on Computational & Experimental Engineering and Sciences, Singapore, Singapore

The fungal pathogen Candida albicans (C. albicans) is particularly problematic for immunocompromised patients and those with medical implants. Introducing Candida-resistant medical devices could potentially reduce mortality rates from such infections... Read More about Development of C. albican Anti-attachment Inkjet 3D Printing Ink, via High Throughput Screening.

Fungal Attachment-Resistant Polymers for the Additive Manufacture of Medical Devices (2024)
Journal Article
Yong, L. X., Sefton, J., Vallières, C., Rance, G. A., Hill, J., Cuzzucoli Crucitti, V., Dundas, A. A., Rose, F. R., Alexander, M. R., Wildman, R., He, Y., Avery, S. V., & Irvine, D. J. (2024). Fungal Attachment-Resistant Polymers for the Additive Manufacture of Medical Devices. ACS Applied Materials and Interfaces, 16(40), 54508–54519. https://doi.org/10.1021/acsami.4c04833

This study reports the development of the first copolymer material that (i) is resistant to fungal attachment and hence biofilm formation, (ii) operates via a nonkilling mechanism, i.e., avoids the use of antifungal actives and the emergence of funga... Read More about Fungal Attachment-Resistant Polymers for the Additive Manufacture of Medical Devices.

A facile one step route that introduces functionality to polymer powders for laser sintering (2024)
Journal Article
Krumins, E., Crawford, L. A., Rogers, D. M., Machado, F., Taresco, V., East, M., Irving, S. H., Fowler, H. R., Jiang, L., Starr, N., Parmenter, C. D., Kortsen, K., Cuzzucoli Crucitti, V., Avery, S. V., Tuck, C. J., & Howdle, S. M. (2024). A facile one step route that introduces functionality to polymer powders for laser sintering. Nature Communications, 15(1), Article 3137. https://doi.org/10.1038/s41467-024-47376-4

Laser Sintering (LS) is a type of Additive Manufacturing (AM) exploiting laser processing of polymeric particles to produce 3D objects. Because of its ease of processability and thermo-physical properties, polyamide-12 (PA-12) represents ~95% of the... Read More about A facile one step route that introduces functionality to polymer powders for laser sintering.

A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection (2023)
Journal Article
Crawford, L. A., Cuzzucoli Crucitti, V., Stimpson, A., Morgan, C., Blake, J., Wildman, R. D., Hook, A. L., Alexander, M. R., Irvine, D. J., & Avery, S. V. (2023). A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection. Green Chemistry, 25(21), 8558-8569. https://doi.org/10.1039/d3gc01911j

Fungicidal compounds are actives widely used for crop protection from fungal infection, but they can also kill beneficial organisms, enter the food chain and promote resistant pathogen strains from overuse. Here we report the first field crop trial o... Read More about A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection.

Inkjet 3D Printing of Polymers Resistant to Fungal Attachment (2021)
Journal Article
He, Y., Vallières, C., Alexander, M. R., Wildman, R. D., & Avery, S. V. (2021). Inkjet 3D Printing of Polymers Resistant to Fungal Attachment. Bio-protocol, 11(9), Article e4016. https://doi.org/10.21769/BioProtoc.4016

Inkjet 3D printing is an additive manufacturing method that allows the user to produce a small batch of customized devices for comparative study versus commercial products. Here, we describe the use of a commercial 2D ink development system (Dimatix... Read More about Inkjet 3D Printing of Polymers Resistant to Fungal Attachment.

Potentiated inhibition of Trichoderma virens and other environmental fungi by new biocide combinations (2021)
Journal Article
Vallières, C., Alexander, C., & Avery, S. V. (2021). Potentiated inhibition of Trichoderma virens and other environmental fungi by new biocide combinations. Applied Microbiology and Biotechnology, 105, 2867-2875. https://doi.org/10.1007/s00253-021-11211-3

Fungi cause diverse, serious socio-economic problems, including biodeterioration of valuable products and materials that spawns a biocides industry worth ~$11 billion globally. To help combat environmental fungi that commonly colonise material produc... Read More about Potentiated inhibition of Trichoderma virens and other environmental fungi by new biocide combinations.

Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration (2020)
Journal Article
Vallieres, C., Hook, A. L., He, Y., Crucitti, V. C., Figueredo, G., Davies, C. R., Burroughs, L., Winkler, D. A., Wildman, R. D., Irvine, D. J., Alexander, M. R., & Avery, S. V. (2020). Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration. Science Advances, 6(23), Article eaba6574. https://doi.org/10.1126/sciadv.aba6574

© 2020 The Authors. Fungi have major, negative socioeconomic impacts, but control with bioactive agents is increasingly restricted, while resistance is growing. Here, we describe an alternative fungal control strategy via materials operating passivel... Read More about Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration.

The antimalarial drug quinine interferes with serotonin biosynthesis and action (2014)
Journal Article
Islahudin, F., Tindall, S. M., Mellor, I. R., Swift, K., Christensen, H. E., Fone, K. C., Pleass, R. J., & Avery, S. V. (2014). The antimalarial drug quinine interferes with serotonin biosynthesis and action. Scientific Reports, 4(3618), https://doi.org/10.1038/srep03618

The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As... Read More about The antimalarial drug quinine interferes with serotonin biosynthesis and action.