Skip to main content

Research Repository

Advanced Search

All Outputs (36)

AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping (2017)
Journal Article
Pound, M. P., Fozard, S., Torres Torres, M., Forde, B. G., & French, A. P. (2017). AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping. Plant Methods, 13(1), Article 12. https://doi.org/10.1186/s13007-017-0161-y

Background: Computer-based phenotyping of plants has risen in importance in recent years. Whilst much software has been written to aid phenotyping using image analysis, to date the vast majority has been only semi-automatic. However, such interaction... Read More about AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping.

The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology (2017)
Journal Article
Burrell, T., Fozard, S., Holroyd, G. H., French, A. P., Pound, M. P., Bigley, C. J., …Forde, B. G. (2017). The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology. Plant Methods, 13(1), Article 10. https://doi.org/10.1186/s13007-017-0158-6

Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling... Read More about The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology.

Image-based 3D canopy reconstruction to determine potential productivity in complex multi-species crop systems (2017)
Journal Article
Burgess, A. J., Retkute, R., Pound, M. P., Mayes, S., & Murchie, E. H. (2017). Image-based 3D canopy reconstruction to determine potential productivity in complex multi-species crop systems. Annals of Botany, 119(4), 517-532. https://doi.org/10.1093/aob/mcw242

Background and Aims: Intercropping systems contain two or more species simultaneously in close proximity. Due to contrasting features of the component crops, quantification of the light environment and photosynthetic productivity is extremely difficu... Read More about Image-based 3D canopy reconstruction to determine potential productivity in complex multi-species crop systems.

The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis (2016)
Journal Article
Burgess, A. J., Retkute, R., Preston, S. P., Jensen, O. E., Pound, M. P., Pridmore, T. P., & Murchie, E. H. (2016). The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis. Frontiers in Plant Science, 7(1392), https://doi.org/10.3389/fpls.2016.01392

Physical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical exci... Read More about The 4-Dimensional Plant: Effects of Wind-Induced Canopy Movement on Light Fluctuations and Photosynthesis.

Approaches to three-dimensional reconstruction of plant shoot topology and geometry (2016)
Journal Article
Gibbs, J., Pound, M. P., French, A. P., Wells, D. M., Murchie, E. H., & Pridmore, T. P. (2016). Approaches to three-dimensional reconstruction of plant shoot topology and geometry. Functional Plant Biology, 44(1), 62-75. https://doi.org/10.1071/FP16167

There are currently 805 million people classified as chronically undernourished, and yet the World’s population is still increasing. At the same time, global warming is causing more frequent and severe flooding and drought, thus destroying crops and... Read More about Approaches to three-dimensional reconstruction of plant shoot topology and geometry.

Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping (2016)
Working Paper
Pound, M. P., Burgess, A. J., Wilson, M. H., Atkinson, J. A., Griffiths, M., Jackson, A. S., …French, A. P. Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping

Deep learning is an emerging field that promises unparalleled results on many data analysis problems. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping, and demonstrate state-of-th... Read More about Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping.

A patch-based approach to 3D plant shoot phenotyping (2016)
Journal Article
Pound, M. P., French, A. P., Fozard, J. A., Murchie, E. H., & Pridmore, T. P. (2016). A patch-based approach to 3D plant shoot phenotyping. Machine Vision and Applications, 27(5), 767-779. https://doi.org/10.1007/s00138-016-0756-8

The emerging discipline of plant phenomics aims to measure key plant characteristics, or traits, though as yet the set of plant traits that should be measured by automated systems is not well defined. Methods capable of recovering generic representat... Read More about A patch-based approach to 3D plant shoot phenotyping.

Three-dimensional reconstruction of plant shoots from multiple images using an active vision system (2015)
Journal Article
Gibbs, J., Pound, M. P., Wells, D. M., Murchie, E. H., French, A. P., & Pridmore, T. P. (2015). Three-dimensional reconstruction of plant shoots from multiple images using an active vision system

The reconstruction of 3D models of plant shoots is a challenging problem central to the emerging discipline of plant phenomics – the quantitative measurement of plant structure and function. Current approaches are, however, often limited by the use o... Read More about Three-dimensional reconstruction of plant shoots from multiple images using an active vision system.

High-Resolution Three-Dimensional Structural Data Quantify the Impact of Photoinhibition on Long-Term Carbon Gain in Wheat Canopies in the Field (2015)
Journal Article
Burgess, A. J., Retkute, R., Pound, M. P., Foulkes, J., Preston, S. P., Jensen, O. E., …Murchie, E. H. (2015). High-Resolution Three-Dimensional Structural Data Quantify the Impact of Photoinhibition on Long-Term Carbon Gain in Wheat Canopies in the Field. Plant Physiology, 169(2), 1192-1204. https://doi.org/10.1104/pp.15.00722

Photoinhibition reduces photosynthetic productivity; however, it is difficult to quantify accurately in complex canopies partly because of a lack of high-resolution structural data on plant canopy architecture, which determines complex fluctuations o... Read More about High-Resolution Three-Dimensional Structural Data Quantify the Impact of Photoinhibition on Long-Term Carbon Gain in Wheat Canopies in the Field.

Root system markup language: Toward a unified root architecture description language (2015)
Journal Article
Meunier, F., Lobet, G., Pound, M. P., Diener, J., Pradal, C., Draye, X., …Schnepf, A. (2015). Root system markup language: Toward a unified root architecture description language. Plant Physiology, 167(3), 617-627. https://doi.org/10.1104/pp.114.253625

© 2015 American Society of Plant Biologists. All rights reserved. The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary fac... Read More about Root system markup language: Toward a unified root architecture description language.

Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat (2015)
Journal Article
Atkinson, J. A., Wingen, L. U., Griffiths, M., Pound, M. P., Gaju, O., Foulkes, M. J., …Wells, D. M. (2015). Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. Journal of Experimental Botany, 66(8), 2283-2292. https://doi.org/10.1093/jxb/erv006

Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen c... Read More about Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat.

Quantification of Fluorescent Reporters in Plant Cells (2014)
Book Chapter
Pound, M., French, A. P., & Wells, D. M. (2015). Quantification of Fluorescent Reporters in Plant Cells. In J. M. Estevez (Ed.), Plant Cell Expansion: Methods and Protocols (123-131). Springer. https://doi.org/10.1007/978-1-4939-1902-4_11

© Springer Science+Business Media New York 2015. Fluorescent reporters are powerful tools for plant research. Many studies require accurate determination of fluorescence intensity and localization. Here, we describe protocols for the quantification o... Read More about Quantification of Fluorescent Reporters in Plant Cells.

Automated recovery of 3D models of plant shoots from multiple colour images (2014)
Journal Article
Pound, M. P., French, A. P., Murchie, E. H., & Pridmore, T. P. (2014). Automated recovery of 3D models of plant shoots from multiple colour images. Plant Physiology, 166(4), https://doi.org/10.1104/pp.114.248971

Increased adoption of the systems approach to biological research has focussed attention on the use of quantitative models of biological objects. This includes a need for realistic 3D representations of plant shoots for quantification and modelling.... Read More about Automated recovery of 3D models of plant shoots from multiple colour images.

Systems Analysis of Auxin Transport in the Arabidopsis Root Apex (2014)
Journal Article
Band, L. R., Wells, D. M., Fozard, J. A., Ghetiu, T., French, A. P., Pound, M. P., …Bennett, M. J. (2014). Systems Analysis of Auxin Transport in the Arabidopsis Root Apex. Plant Cell, 26(3), 862-875. https://doi.org/10.1105/tpc.113.119495

Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the... Read More about Systems Analysis of Auxin Transport in the Arabidopsis Root Apex.

RootNav: navigating images of complex root architectures (2013)
Journal Article
Pound, M. P., French, A. P., Atkinson, J. A., Wells, D. M., Bennett, M. J., & Pridmore, T. (2013). RootNav: navigating images of complex root architectures. Plant Physiology, 162(4), 1802-1814. https://doi.org/10.1104/pp.113.221531

We present a novel image analysis tool that allows the semiautomated quantification of complex root system architectures in a range of plant species grown and imaged in a variety of ways. The automatic component of RootNav takes a top-down approach,... Read More about RootNav: navigating images of complex root architectures.