Skip to main content

Research Repository

Advanced Search

All Outputs (170)

Anion-binding-induced electrochemical signal transduction in ferrocenylimidazolium: combined electrochemical experimental and theoretical investigation (2019)
Journal Article
Weng, T., Huang, Y., Xue, L., Cheng, J., Jin, S., Liu, S., …Chen, G. Z. (2019). Anion-binding-induced electrochemical signal transduction in ferrocenylimidazolium: combined electrochemical experimental and theoretical investigation. Molecules, 24(2), Article 238. https://doi.org/10.3390/molecules24020238

Five ferrocene alkymethylimidazolium cations 1a–1d and 2 with different alkyl spacer lengths were reinvestigated using voltammetry and density functional theory (DFT) calculations. The voltammetric responses of ligand 2 toward various anions are desc... Read More about Anion-binding-induced electrochemical signal transduction in ferrocenylimidazolium: combined electrochemical experimental and theoretical investigation.

Optimal Utilization of Combined Double Layer and Nernstian Charging of Activated Carbon Electrodes in Aqueous Halide Supercapattery through Capacitance Unequalization (2018)
Journal Article
Akinwolemiwa, B., Wei, C., Yang, Q., Yu, L., Xia, L., Hu, D., …Chen, G. Z. (2018). Optimal Utilization of Combined Double Layer and Nernstian Charging of Activated Carbon Electrodes in Aqueous Halide Supercapattery through Capacitance Unequalization. Journal of The Electrochemical Society, 165(16), A4067-A4076. https://doi.org/10.1149/2.0031902jes

Charge storage through electric double layer (EDL) charging of activated carbon (AC) and redox reactions of iodide and bromide ions in aqueous electrolytes and at the AC | electrolyte interface has been investigated by cyclic voltammetry and galvanos... Read More about Optimal Utilization of Combined Double Layer and Nernstian Charging of Activated Carbon Electrodes in Aqueous Halide Supercapattery through Capacitance Unequalization.

State of the Art of Electric Taxiing Systems (2018)
Conference Proceeding
Lukic, M., Hebala, A., Giangrande, P., Klumpner, C., Nuzzo, S., Chen, G., …Galea, M. (2018). State of the Art of Electric Taxiing Systems. In Proceedings - 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC) (1-6). https://doi.org/10.1109/ESARS-ITEC.2018.8607786

The aviation industry represents an ever-expanding economy and the aircraft market forecast reveals an optimistic growth for the coming decades. New requirements and guidelines call for a more efficient, reliable, and environment friendly aircraft op... Read More about State of the Art of Electric Taxiing Systems.

Microfluidic fabrication of porous polydimethylsiloxane microparticles for the treatment of toluene-contaminated water (2018)
Journal Article
Lian, Z., Ren, Y., He, J., Chen, G. Z., & Koh, K. S. (2018). Microfluidic fabrication of porous polydimethylsiloxane microparticles for the treatment of toluene-contaminated water. Microfluidics and Nanofluidics, 22(12), https://doi.org/10.1007/s10404-018-2157-y

© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. In this paper, pristine and two types of porous polydimethylsiloxane (PDMS) microparticles were fabricated using oil-in-water (O/W) single emulsion template by the needle-based microflui... Read More about Microfluidic fabrication of porous polydimethylsiloxane microparticles for the treatment of toluene-contaminated water.

Cross-linked Ni(OH)<inf>2</inf>/CuCo<inf>2</inf>S<inf>4</inf>/Ni networks as binder-free electrodes for high performance supercapatteries (2018)
Journal Article
Tang, N., You, H., Li, M., Chen, G. Z., & Zhang, L. (2018). Cross-linked Ni(OH)2/CuCo2S4/Ni networks as binder-free electrodes for high performance supercapatteries. Nanoscale, 10(44), 20526-20532. https://doi.org/10.1039/c8nr05662e

The heterogeneous Ni(OH)2/CuCo2S4/Ni electrode is constructed by appropriately adjusting the time-dependent hydrothermal and electrodeposition process. A hybrid device exhibits 39.7 W h kg-1 of specific energy and 365.3 W kg-1 of specific power, with... Read More about Cross-linked Ni(OH)<inf>2</inf>/CuCo<inf>2</inf>S<inf>4</inf>/Ni networks as binder-free electrodes for high performance supercapatteries.

(Invited) Interaction of Anions with Partially Oxidized Carbon Nanotubes and the Influence on the Performance of Polypyrrole-Carbon Nanotube Composite Electrodes (2018)
Presentation / Conference
Wei, C., Akinwolemiwa, B., Yu, L., Hu, D., Xia, L., & Chen, G. Z. (2018, September). (Invited) Interaction of Anions with Partially Oxidized Carbon Nanotubes and the Influence on the Performance of Polypyrrole-Carbon Nanotube Composite Electrodes. Presented at AiMES 2018 Meeting, Cancun, Mexico

Partial oxidation of carbon nanotubes (CNTs) in mixed HNO3 and H2SO4 is commonly used for the preparation of polymer-CNT composites. This procedure, however, emits toxic NOx fumes, making it difficult for commercial scale-up. Herein we report an envi... Read More about (Invited) Interaction of Anions with Partially Oxidized Carbon Nanotubes and the Influence on the Performance of Polypyrrole-Carbon Nanotube Composite Electrodes.

Polymer Composites with Functionalized Carbon Nanotube and Graphene (2018)
Book Chapter
Wei, C. H., Akinwolemiwa, B., Yu, L. P., Hu, D., & Chen, G. Z. (2018). Polymer Composites with Functionalized Carbon Nanotube and Graphene. In K. Pielichowski, & T. Majka (Eds.), Polymer Composites with Functionalized Nanoparticles: Synthesis, Properties, and Applications (211-248). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-814064-2.00007-X

The functionalization of carbon nanotubes (CNTs) and graphene (GN) has been shown to be an important prerequisite for the effective coating of their surfaces with polymers. In this chapter, the methods of introducing carboxylic, carbonyl, sulfonic, a... Read More about Polymer Composites with Functionalized Carbon Nanotube and Graphene.

Highly-dispersed nickel nanoparticles decorated titanium dioxide nanotube array for enhanced solar light absorption (2018)
Journal Article
Chen, J., Zhou, Y., Li, R., Wang, X., & Chen, G. Z. (2019). Highly-dispersed nickel nanoparticles decorated titanium dioxide nanotube array for enhanced solar light absorption. Applied Surface Science, 464, 716-724. https://doi.org/10.1016/j.apsusc.2018.09.091

Honeycomb titanium dioxide nanotube array (TiO2-NTA) decorated by highly-dispersed nickel nanoparticles (Ni-NPs) has been grown under control on Ti foil by anodization and subsequent electrodeposition. The pore diameter and length of TiO2-NTA, and th... Read More about Highly-dispersed nickel nanoparticles decorated titanium dioxide nanotube array for enhanced solar light absorption.

Synthesis of polydimethylsiloxane microspheres using microfluidics for treatment of toluene in wastewater (2018)
Conference Proceeding
Lian, Z., Ren, Y., He, J., Chen, G. Z., & Koh, K. S. (2018). Synthesis of polydimethylsiloxane microspheres using microfluidics for treatment of toluene in wastewater. In ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels. https://doi.org/10.1115/ICNMM2018-7775

Copyright © 2018 ASME. Monodispersed polydimethylsiloxane (PDMS) microspheres are fabricated by a needle-based versatile microfluidic device with flow-focusing geometry. Microdroplets with various diameters are generated by tuning the flow rate of th... Read More about Synthesis of polydimethylsiloxane microspheres using microfluidics for treatment of toluene in wastewater.

Yttria-Stabilized Zirconia Aided Electrochemical Investigation on Ferric Ions in Mixed Molten Calcium and Sodium Chlorides (2018)
Journal Article
Hu, H., Gao, Y., Lao, Y., Qin, Q., Li, G., & Chen, G. Z. (2018). Yttria-Stabilized Zirconia Aided Electrochemical Investigation on Ferric Ions in Mixed Molten Calcium and Sodium Chlorides. Metallurgical and Materials Transactions B, 49(5), 2794-2808. https://doi.org/10.1007/s11663-018-1371-z

© 2018, The Minerals, Metals & Materials Society and ASM International. Electrolytic reduction of dissolved iron oxide to metal iron in molten salts with an inert anode is an alternative short route for steelmaking without CO 2 emissions. A novel... Read More about Yttria-Stabilized Zirconia Aided Electrochemical Investigation on Ferric Ions in Mixed Molten Calcium and Sodium Chlorides.

Synthesis of Polydimethylsiloxane Microspheres Using Microfluidics for Treatment of Toluene in Wastewater (2018)
Conference Proceeding
Lian, Z., Ren, Y., He, J., Chen, G. Z., & Koh, K. S. (2018). Synthesis of Polydimethylsiloxane Microspheres Using Microfluidics for Treatment of Toluene in Wastewater. . https://doi.org/10.1115/icnmm2018-7775

Copyright © 2018 ASME. Monodispersed polydimethylsiloxane (PDMS) microspheres are fabricated by a needle-based versatile microfluidic device with flow-focusing geometry. Microdroplets with various diameters are generated by tuning the flow rate of th... Read More about Synthesis of Polydimethylsiloxane Microspheres Using Microfluidics for Treatment of Toluene in Wastewater.

Fundamental Consideration for Electrochemical Engineering of Supercapattery (2018)
Journal Article
Akinwolemiwa, B., & Chen, G. (2018). Fundamental Consideration for Electrochemical Engineering of Supercapattery. Journal of the Brazilian Chemical Society, 29(5), 960-972. https://doi.org/10.21577/0103-5053.20180010

Supercapattery is the generic name for various electrochemical energy storage (EES) devices combining the merits of battery (high energy density) and supercapacitor (high power density and long cycling life). In this article, the principle and applic... Read More about Fundamental Consideration for Electrochemical Engineering of Supercapattery.

Building porous graphene architectures for electrochemical energy storage devices (2018)
Book Chapter
Chen, G. Z., & Chen, Y. (2018). Building porous graphene architectures for electrochemical energy storage devices. In R. Rajagopalan, & A. Balakrishnan (Eds.), Innovations in Engineered Porous Materials for Energy Generation and Storage Applications (86-108). Boca Raton, Florida, USA: Taylor and Francis. https://doi.org/10.1201/9781315184401-3

This chapter offers a critical review of graphene based porous materials for energy applications. Three main recent progresses are discussed on materials synthesis, including (1) potassium hydroxide activated graphenes, (2) graphene hydrogels from hy... Read More about Building porous graphene architectures for electrochemical energy storage devices.

A Rechargeable High-Temperature Molten Salt Iron–Oxygen Battery (2018)
Journal Article
Peng, C., Guan, C., Lin, J., Zhang, S., Bao, H., Wang, Y., …Wang, J. Q. (2018). A Rechargeable High-Temperature Molten Salt Iron–Oxygen Battery. ChemSusChem, 11(11), 1880-1886. https://doi.org/10.1002/cssc.201800237

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions... Read More about A Rechargeable High-Temperature Molten Salt Iron–Oxygen Battery.

Molecular level one-step activation of agar to activated carbon for high performance supercapacitors (2018)
Journal Article
Zhang, L., Gu, H., Sun, H., Cao, F., Chen, Y., & Chen, G. Z. (2018). Molecular level one-step activation of agar to activated carbon for high performance supercapacitors. Carbon, 132, 573-579. https://doi.org/10.1016/j.carbon.2018.02.100

Activated carbon was synthesized by a simple one-step calcination of deoxygenated agar in a hot KOH aqueous solution, in which KOH plays both deoxidant and activation agent. The deoxygenation course omits high temperature carbonization in the convent... Read More about Molecular level one-step activation of agar to activated carbon for high performance supercapacitors.

Lithium Bis(fluorosulfony)imide-Lithium Hexafluorophosphate Binary-Salt Electrolytes for Lithium-Ion Batteries: Aluminum Corrosion Behaviors and Electrochemical Properties (2018)
Journal Article
Xia, L., Jiang, Y., Pan, Y., Li, S., Wang, J., He, Y., …Chen, G. Z. (2018). Lithium Bis(fluorosulfony)imide-Lithium Hexafluorophosphate Binary-Salt Electrolytes for Lithium-Ion Batteries: Aluminum Corrosion Behaviors and Electrochemical Properties. ChemistrySelect, 3(7), 1954-1960. https://doi.org/10.1002/slct.201702488

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Aluminum corrosion behaviors and electrochemical properties of Lithium bis(fluorosulfony)imide (LiFSI)-lithium hexafluorophosphate (LiPF6) binary-salt electrolytes containing mixtures of LiFSI and L... Read More about Lithium Bis(fluorosulfony)imide-Lithium Hexafluorophosphate Binary-Salt Electrolytes for Lithium-Ion Batteries: Aluminum Corrosion Behaviors and Electrochemical Properties.

Research Progress and Perspectives on High Voltage, Flame Retardant Electrolytes for Lithium-Ion Batteries (2017)
Journal Article
Xia, L., Yu, L., Hu, D., & Chen, Z. G. (2017). Research Progress and Perspectives on High Voltage, Flame Retardant Electrolytes for Lithium-Ion Batteries. Acta Chimica Sinica, 75(12), 1183-1195. https://doi.org/10.6023/A17060284

© 2017 Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. The electrolyte is an indispensable constituent in lithium ion batteries, and its role conducts electricity by means of the transportation of charge carries between the pair... Read More about Research Progress and Perspectives on High Voltage, Flame Retardant Electrolytes for Lithium-Ion Batteries.

Fluorinated electrolytes for li-ion batteries: the lithium difluoro(oxalato)borate additive for stabilizing the solid electrolyte interphase (2017)
Journal Article
Xia, L., Lee, S., Jiang, Y., Xia, Y., Chen, G. Z., & Liu, Z. (in press). Fluorinated electrolytes for li-ion batteries: the lithium difluoro(oxalato)borate additive for stabilizing the solid electrolyte interphase. ACS Omega, 2(12), https://doi.org/10.1021/acsomega.7b01196

Fluorinated electrolytes based on fluoroethylene carbonate (FEC) have been considered as promising alternative electrolytes for high-voltage and high-energy capacity lithium-ion batteries (LIBs). However, the compatibility of the fluorinated electrol... Read More about Fluorinated electrolytes for li-ion batteries: the lithium difluoro(oxalato)borate additive for stabilizing the solid electrolyte interphase.

Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment (2017)
Journal Article
Dong, B., Li, G., Yang, X., Chen, L., & Chen, G. Z. (2018). Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment. Ultrasonics Sonochemistry, 42, 452-463. https://doi.org/10.1016/j.ultsonch.2017.12.008

© 2017 Elsevier B.V. (NH4)Fe2(PO4)2(OH)·2H2O samples with different morphology are successfully synthesized via two-step synthesis route – ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment (UIHT) method. The eff... Read More about Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment.

Development of the Fray-Farthing-Chen Cambridge Process: towards the sustainable production of titanium and its alloys (2017)
Journal Article
Hu, D., Dolganov, A., Ma, M., Bhattacharya, B., Bishop, M. T., & Chen, G. Z. (2018). Development of the Fray-Farthing-Chen Cambridge Process: towards the sustainable production of titanium and its alloys. JOM Journal of the Minerals, Metals and Materials Society, 70(2), https://doi.org/10.1007/s11837-017-2664-4

The Kroll process has been employed for titanium extraction since the 1950s. It is a labour and energy intensive multi-step semi-batch process. The post-extraction processes for making the raw titanium into alloys and products are also excessive, inc... Read More about Development of the Fray-Farthing-Chen Cambridge Process: towards the sustainable production of titanium and its alloys.