Bin Dong
Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment
Dong, Bin; Li, Guang; Yang, Xiaogang; Chen, Luming; Chen, George Z.
Authors
Guang Li
Xiaogang Yang
Luming Chen
Professor GEORGE CHEN GEORGE.CHEN@NOTTINGHAM.AC.UK
PROFESSOR OF ELECTROCHEMICAL TECHNOLOGIES
Abstract
© 2017 Elsevier B.V. (NH4)Fe2(PO4)2(OH)·2H2O samples with different morphology are successfully synthesized via two-step synthesis route – ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment (UIHT) method. The effects of the adoption of ultrasonic-intensified impinging stream pre-treatment, reagent concentration (C), pH value of solution and hydrothermal reaction time (T) on the physical and chemical properties of the synthesised (NH4)Fe2(PO4)2(OH)·2H2O composites and FePO4 particles were systematically investigated. Nano-seeds were firstly synthesized using the ultrasonic-intensified T-mixer and these nano-seeds were then transferred into a hydrothermal reactor, heated at 170 °C for 4 h. The obtained samples were characterized by utilising XRD, BET, TG-DTA, SEM, TEM, Mastersizer 3000 and FTIR, respectively. The experimental results have indicated that the particle size and morphology of the obtained samples are remarkably affected by the use of ultrasonic-intensified impinging stream pre-treatment, hydrothermal reaction time, reagent concentration, and pH value of solution. When such (NH4)Fe2(PO4)2(OH)·2H2O precursor samples were transformed to FePO4 products after sintering at 650 °C for 10 h, the SEM images have clearly shown that both the precursor and the final product still retain their monodispersed spherical microstructures with similar particle size of about 3 μm when the samples are synthesised at the optimised condition.
Citation
Dong, B., Li, G., Yang, X., Chen, L., & Chen, G. Z. (2018). Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment. Ultrasonics Sonochemistry, 42, 452-463. https://doi.org/10.1016/j.ultsonch.2017.12.008
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 4, 2017 |
Online Publication Date | Dec 7, 2017 |
Publication Date | 2018-04 |
Deposit Date | May 27, 2020 |
Journal | Ultrasonics Sonochemistry |
Print ISSN | 1350-4177 |
Electronic ISSN | 1873-2828 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 42 |
Pages | 452-463 |
DOI | https://doi.org/10.1016/j.ultsonch.2017.12.008 |
Public URL | https://nottingham-repository.worktribe.com/output/3213206 |
Publisher URL | https://www.sciencedirect.com/science/article/abs/pii/S1350417717305758 |
You might also like
Redox Materials for Electrochemical Capacitors
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search