Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Metabolic engineering of Cupriavidus necator H16 for heterotrophic and autotrophic production of 3-hydroxypropionic acid (2022)
Journal Article
Salinas, A., McGregor, C., Irorere, V., Arenas-López, C., Bommareddy, R. R., Winzer, K., …Kovács, K. (2022). Metabolic engineering of Cupriavidus necator H16 for heterotrophic and autotrophic production of 3-hydroxypropionic acid. Metabolic Engineering, 74, 178-190. https://doi.org/10.1016/j.ymben.2022.10.014

3-Hydroxypropionate (3-HP) is a versatile compound for chemical synthesis and a potential building block for biodegradable polymers. Cupriavidus necator H16, a facultative chemolithoautotroph, is an attractive production chassis and has been extensiv... Read More about Metabolic engineering of Cupriavidus necator H16 for heterotrophic and autotrophic production of 3-hydroxypropionic acid.

Synthetic Biology Toolbox, Including a Single-Plasmid CRISPR-Cas9 System to Biologically Engineer the Electrogenic, Metal-Resistant Bacterium Cupriavidus metallidurans CH34 (2022)
Journal Article
Turco, F., Garavaglia, M., Van Houdt, R., Hill, P., Rawson, F. J., & Kovacs, K. (2022). Synthetic Biology Toolbox, Including a Single-Plasmid CRISPR-Cas9 System to Biologically Engineer the Electrogenic, Metal-Resistant Bacterium Cupriavidus metallidurans CH34. ACS Synthetic Biology, https://doi.org/10.1021/acssynbio.2c00130

Cupriavidus metallidurans CH34 exhibits extraordinary metabolic versatility, including chemolithoautotrophic growth; degradation of BTEX (benzene, toluene, ethylbenzene, xylene); high resistance to numerous metals; biomineralization of gold, platinum... Read More about Synthetic Biology Toolbox, Including a Single-Plasmid CRISPR-Cas9 System to Biologically Engineer the Electrogenic, Metal-Resistant Bacterium Cupriavidus metallidurans CH34.

Enhancing Microbial Electron Transfer through Synthetic Biology and Biohybrid Approaches: Part I: Bioelectrochemistry for sustainable energy conversion (2022)
Journal Article
Myers, B., Hill, P., Rawson, F., & Kovacs, K. (2022). Enhancing Microbial Electron Transfer through Synthetic Biology and Biohybrid Approaches: Part I: Bioelectrochemistry for sustainable energy conversion. Johnson Matthey Technology Review, 66(4), 443-454. https://doi.org/10.1595/205651322X16548607638938

Traditional microbial synthesis of chemicals and fuels often rely on energy-rich feedstocks such as glucose, raising ethical concerns as they are directly competing with the food supply. Therefore, it is imperative to develop novel processes that rel... Read More about Enhancing Microbial Electron Transfer through Synthetic Biology and Biohybrid Approaches: Part I: Bioelectrochemistry for sustainable energy conversion.

Oxygen-Tolerant RAFT Polymerization Initiated by Living Bacteria (2022)
Journal Article
Gurnani, P., Bennett, M. R., Moloney, C., Catrambone, F., Turco, F., Myers, B., …Rawson, F. J. (2022). Oxygen-Tolerant RAFT Polymerization Initiated by Living Bacteria. ACS Macro Letters, 11(8), 954-960. https://doi.org/10.1021/acsmacrolett.2c00372

Living organisms can synthesize a wide range of macromolecules from a small set of natural building blocks, yet there is potential for even greater materials diversity by exploiting biochemical processes to convert unnatural feedstocks into new abiot... Read More about Oxygen-Tolerant RAFT Polymerization Initiated by Living Bacteria.

Oxygen-Tolerant RAFT Polymerization Initiated by Living Bacteria (2022)
Journal Article
Bennett, M. R., Moloney, C., Catrambone, F., Turco, F., Myers, B., Kovacs, K., …Gurnani, P. (2022). Oxygen-Tolerant RAFT Polymerization Initiated by Living Bacteria. ACS Macro Letters, 11(8), 954-960. https://doi.org/10.1021/acsmacrolett.2c00372

Living organisms can synthesize a wide range of macromolecules from a small set of natural building blocks, yet there is potential for even greater materials diversity by exploiting biochemical processes to convert unnatural feedstocks into new abiot... Read More about Oxygen-Tolerant RAFT Polymerization Initiated by Living Bacteria.

Establishing Mixotrophic Growth of Cupriavidus necator H16 on CO2 and Volatile Fatty Acids (2022)
Journal Article
Jawed, K., Irorere, V. U., Bommareddy, R. R., Minton, N. P., & Kovács, K. (2022). Establishing Mixotrophic Growth of Cupriavidus necator H16 on CO2 and Volatile Fatty Acids. Fermentation, 8(3), Article 125. https://doi.org/10.3390/fermentation8030125

The facultative chemolithoautotroph Cupriavidus necator H16 is able to grow aerobically either with organic substrates or H2 and CO2 s and it can accumulate large amounts of (up to 90%) poly (3‐hydroxybutyrate), a polyhydroxyalkanoate (PHA) biopolyme... Read More about Establishing Mixotrophic Growth of Cupriavidus necator H16 on CO2 and Volatile Fatty Acids.