Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds (2024)
Journal Article
Flinn, B. T., Rance, G. A., Cull, W. J., Cardillo-Zallo, I., Pitcairn, J., Cliffe, M. J., …Khlobystov, A. N. (2024). Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds. ACS Nano, 18(9), 7148–7160. https://doi.org/10.1021/acsnano.3c11820

Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a ne... Read More about Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds.

Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid (2023)
Journal Article
Flinn, B. T., Radu, V., Fay, M. W., Tyler, A. J., Pitcairn, J., Cliffe, M. J., …Khlobystov, A. N. (2023). Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid. Nanoscale Advances, 2023(23), 6423-6434. https://doi.org/10.1039/d3na00155e

Spin-active nanomaterials play a vital role in current and upcoming quantum technologies, such as spintronics, data storage and computing. To advance the design and application of these materials, methods to link size, shape, structure, and chemical... Read More about Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid.