Skip to main content

Research Repository

Advanced Search

Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds

Flinn, Bradley T.; Rance, Graham A.; Cull, William J.; Cardillo-Zallo, Ian; Pitcairn, Jem; Cliffe, Matthew J.; Fay, Michael W.; Tyler, Ashley J.; Weare, Benjamin L.; Stoppiello, Craig T.; Davies, E. Stephen; Mather, Melissa L.; Khlobystov, Andrei N.

Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds Thumbnail


Authors

Bradley T. Flinn

Profile image of GRAHAM RANCE

GRAHAM RANCE Graham.Rance@nottingham.ac.uk
Senior Research Fellow

WILL CULL Will.Cull@nottingham.ac.uk
Research Fellow

Ian Cardillo-Zallo

Jem Pitcairn

Ashley J. Tyler

BENJAMIN WEARE BENJAMIN.WEARE1@NOTTINGHAM.AC.UK
Research Fellow in Electron Diffraction

Craig T. Stoppiello

E. Stephen Davies



Abstract

Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a need to develop analytical tools capable of precisely probing spin information at the single-particle level. In this work, we demonstrate a methodology using negatively charged nitrogen vacancies (NV–) in fluorescent nanodiamond (FND) particles to probe the magnetic switching of a spin crossover (SCO) metal–organic framework (MOF), [Fe(1,6-naphthyridine)2(Ag(CN)2)2] material (1), and a single-molecule photomagnet [X(18-crown-6)(H2O)3]Fe(CN)6·2H2O, where X = Eu and Dy (materials 2a and 2b, respectively), in response to heat, light, and electron beam exposure. We employ correlative light–electron microscopy using transmission electron microscopy (TEM) finder grids to accurately image and sense spin–spin interacting particles down to the single-particle level. We used surface-sensitive optically detected magnetic resonance (ODMR) and magnetic modulation (MM) of FND photoluminescence (PL) to sense spins to a distance of ca. 10–30 nm. We show that ODMR and MM sensing was not sensitive to the temperature-induced SCO of FeII in 1 as formation of paramagnetic FeIII through surface oxidation (detected by X-ray photoelectron spectroscopy) on heating obscured the signal of bulk SCO switching. We found that proximal FNDs could effectively sense the chemical transformations induced by the 200 keV electron beam in 1, namely, AgI → Ag0 and FeII → FeIII. However, transformations induced by the electron beam are irreversible as they substantially disrupt the structure of MOF particles. Finally, we demonstrate NV– sensing of reversible photomagnetic switching, FeIII + (18-crown-6) ⇆ FeII + (18-crown-6)+ •, triggered in 2a and 2b by 405 nm light. The photoredox process of 2a and 2b proved to be the best candidate for room-temperature single-particle magnetic switching utilizing FNDs as a sensor, which could have applications into next-generation quantum technologies.

Citation

Flinn, B. T., Rance, G. A., Cull, W. J., Cardillo-Zallo, I., Pitcairn, J., Cliffe, M. J., Fay, M. W., Tyler, A. J., Weare, B. L., Stoppiello, C. T., Davies, E. S., Mather, M. L., & Khlobystov, A. N. (2024). Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds. ACS Nano, 18(9), 7148–7160. https://doi.org/10.1021/acsnano.3c11820

Journal Article Type Article
Acceptance Date Feb 8, 2024
Online Publication Date Feb 21, 2024
Publication Date Mar 5, 2024
Deposit Date Mar 5, 2024
Publicly Available Date Mar 7, 2024
Journal ACS Nano
Print ISSN 1936-0851
Electronic ISSN 1936-086X
Publisher American Chemical Society
Peer Reviewed Peer Reviewed
Volume 18
Issue 9
Pages 7148–7160
DOI https://doi.org/10.1021/acsnano.3c11820
Keywords spin-crossover, Nitrogen-vacancy sensing, metal−organic framework, nanodiamond, transmission electron microscopy, photomagnetism
Public URL https://nottingham-repository.worktribe.com/output/31618804

Files

flinn-et-al-2024-sensing-the-spin-state-of-room-temperature-switchable-cyanometallate-frameworks-with-nitrogen-vacancy (10.5 Mb)
PDF

Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/

Copyright Statement
Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.




You might also like



Downloadable Citations