Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis (2020)
Journal Article
El-Habashy, S. E., Eltaher, H. M., Gaballah, A., Zaki, E. I., Mehanna, R. A., & El-Kamel, A. H. (2021). Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis. Materials Science and Engineering: C, 119, Article 111599. https://doi.org/10.1016/j.msec.2020.111599

Hydroxyapatite nanoparticles (HApN) are largely employed as osteogenic inorganic material. Inorganic/polymeric hybrid nanostructures can provide versatile bioactivity for superior osteogenicity, particularly as nanoparticles. Herein, we present hybri... Read More about Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis.

Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites (2020)
Journal Article
Eltaher, H. M., Abukunna, F. E., Ruiz-Cantu, L., Stone, Z., Yang, J., & Dixon, J. E. (2020). Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites. Acta Biomaterialia, 113, 339-349. https://doi.org/10.1016/j.actbio.2020.06.012

© 2020 Combating necrosis, by supplying nutrients and removing waste, presents the major challenge for engineering large three-dimensional (3D) tissues. Previous elegant work used 3D printing with carbohydrate glass as a cytocompatible sacrificial te... Read More about Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites.

Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy (2020)
Journal Article
Abdel-Rahman, L. M., Eltaher, H. M., Abdelraouf, K., Bahey-El-Din, M., Ismail, C., Kenawy, E. R. S., & El-Khordagui, L. K. (2020). Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy. Journal of Drug Delivery Science and Technology, 58, Article 101812. https://doi.org/10.1016/j.jddst.2020.101812

There is an unmet demand for local vancomycin (VAN) delivery scaffolds with site retention and tunable release properties for cutaneous and surgical wounds. Nanofibers as drug delivery/cell regeneration promoting scaffolds offer great promise in this... Read More about Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy.