Skip to main content

Research Repository

Advanced Search

All Outputs (9)

Magnon polaron formed by selectively coupled coherent magnon and phonon modes of a surface patterned ferromagnet (2020)
Journal Article
Godejohann, F., Scherbakov, A., Kukhtaruk, S., Poddubny, A., Yaremkevich, D., Wang, M., …Bayer, M. (2020). Magnon polaron formed by selectively coupled coherent magnon and phonon modes of a surface patterned ferromagnet. Physical Review B, 102(14), Article 144438. https://doi.org/10.1103/PhysRevB.102.144438

Strong coupling between two quanta of different excitations leads to the formation of a hybridized state which paves a way for exploiting new degrees of freedom to control phenomena with high efficiency and precision. A magnon polaron is the hybridiz... Read More about Magnon polaron formed by selectively coupled coherent magnon and phonon modes of a surface patterned ferromagnet.

Resonant thermal energy transfer to magnons in a ferromagnetic nanolayer (2020)
Journal Article
Kobecki, M., Scherbakov, A. V., Linnik, T. L., Kukhtaruk, S. M., Gusev, V. E., Pattnaik, D. P., …Bayer, M. (2020). Resonant thermal energy transfer to magnons in a ferromagnetic nanolayer. Nature Communications, 11(1), Article 4130. https://doi.org/10.1038/s41467-020-17635-1

Energy harvesting is a concept which makes dissipated heat useful by transferring thermal energy to other excitations. Most of the existing principles are realized in systems which are heated continuously. We present the concept of high-frequency ene... Read More about Resonant thermal energy transfer to magnons in a ferromagnetic nanolayer.

Complementary Lateral-Spin-Orbit Building Blocks for Programmable Logic and In-Memory Computing (2020)
Journal Article
Zhang, N., Cao, Y., Li, Y., Rushforth, A. W., Ji, Y., Zheng, H., & Wang, K. (2020). Complementary Lateral-Spin-Orbit Building Blocks for Programmable Logic and In-Memory Computing. Advanced Electronic Materials, 6(8), Article 2000296. https://doi.org/10.1002/aelm.202000296

Current-driven switching of nonvolatile spintronic materials and devices based on spin–orbit torques offer fast data processing speed, low power consumption, and unlimited endurance for future information processing applications. Analogous to convent... Read More about Complementary Lateral-Spin-Orbit Building Blocks for Programmable Logic and In-Memory Computing.

Low-energy switching of antiferromagnetic CuMnAs/GaP using sub-10 nanosecond current pulses (2020)
Journal Article
Omari, K. A., Barton, L. X., Amin, O., Campion, R. P., Rushforth, A. W., Kent, A. J., …Edmonds, K. W. (2020). Low-energy switching of antiferromagnetic CuMnAs/GaP using sub-10 nanosecond current pulses. Journal of Applied Physics, 127(19), Article 193906. https://doi.org/10.1063/5.0006183

The recently discovered electrical-induced switching of antiferromagnetic (AF) materials that have spatial inversion asymmetry has enriched the field of spintronics immensely and opened the door for the concept of antiferromagnetic memory devices. Cu... Read More about Low-energy switching of antiferromagnetic CuMnAs/GaP using sub-10 nanosecond current pulses.

Spin flop and crystalline anisotropic magnetoresistance in CuMnAs (2020)
Journal Article
Wang, M., Andrews, C., Reimers, S., Amin, O. J., Wadley, P., Campion, R. P., …Maccherozzi, F. (2020). Spin flop and crystalline anisotropic magnetoresistance in CuMnAs. Physical Review B, 101(9), Article 094429. https://doi.org/10.1103/PhysRevB.101.094429

We report magnetic-field-induced rotation of the antiferromagnetic Néel vector in epitaxial CuMnAs thin films. First, using soft x-ray magnetic linear dichroism spectroscopy as well as magnetometry, we demonstrate spin-flop switching and continuous s... Read More about Spin flop and crystalline anisotropic magnetoresistance in CuMnAs.

Suppression of Dynamically Induced Stochastic Magnetic Behaviour through Materials Engineering (2020)
Journal Article
Broomhall, T., Rushforth, A., Rosamond, M., Linfield, E., & Hayward, T. (2020). Suppression of Dynamically Induced Stochastic Magnetic Behaviour through Materials Engineering. Physical Review Applied, 13(2), https://doi.org/10.1103/PhysRevApplied.13.024039

tochastic behavior fundamentally limits the performance and reliability of nanomagnetic devices. Typically, stochastic behavior is assumed to be the result of simple thermal activation, but it may also be “dynamically induced,” i.e., a direct result... Read More about Suppression of Dynamically Induced Stochastic Magnetic Behaviour through Materials Engineering.

Suppression of Dynamically Induced Stochastic Magnetic Behaviour through Materials Engineering (2020)
Journal Article
Broomhall, T., Rushforth, A., Rosamond, M., Linfield, E., & Hayward, T. (2020). Suppression of Dynamically Induced Stochastic Magnetic Behaviour through Materials Engineering. Physical Review Applied, 13(2), https://doi.org/10.1103/PhysRevApplied.13.024039

Stochastic behaviour fundamentally limits the performance and reliability of nanomagnetic devices. Typically, stochastic behaviour is assumed to be the result of simple thermal activation, but it may also be "dynamically induced" i.e. a direct result... Read More about Suppression of Dynamically Induced Stochastic Magnetic Behaviour through Materials Engineering.