Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Correction to “Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy” (2023)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D., Lim, K., …Bradshaw, T. D. (2024). Correction to “Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy”. ACS Omega, 9(1), Article 2012. https://doi.org/10.1021/acsomega.3c09291

Neil R. Thomas was added as an author. The change in authorship is reflected in the authorship of this Correction.

Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy (2022)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D., Lim, K., …Bradshaw, T. (2022). Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy. ACS Omega, 7(25), 21473-21482. https://doi.org/10.1021/acsomega.2c00997

he O-acetyl (or acetate) derivative of the Aspidosperma alkaloid Jerantinine A (JAa) elicits anti-tumor activity against cancer cell lines including mammary carcinoma cell lines irrespective of receptor status (0.14 < GI50 < 0.38 μM), targeting micro... Read More about Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy.

Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy (2022)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D. H., Lim, K. H., …Bradshaw, T. D. (2022). Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy. ACS Omega, https://doi.org/10.1021/acsomega.2c00997

The O-acetyl (or acetate) derivative of the Aspidosperma alkaloid Jerantinine A (JAa) elicits anti-tumor activity against cancer cell lines including mammary carcinoma cell lines irrespective of receptor status (0.14 < GI 50 < 0.38 μM), targeting mic... Read More about Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy.

Engineering improved ethylene production: Leveraging systems Biology and adaptive laboratory evolution (2021)
Journal Article
Vaud, S., Pearcy, N., Hanževački, M., Van Hagen, A. M., Abdelrazig, S., Safo, L., …Bryan, S. J. (2021). Engineering improved ethylene production: Leveraging systems Biology and adaptive laboratory evolution. Metabolic Engineering, 67, 308-320. https://doi.org/10.1016/j.ymben.2021.07.001

Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is... Read More about Engineering improved ethylene production: Leveraging systems Biology and adaptive laboratory evolution.

Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering (2020)
Journal Article
Amer, M. H., Alvarez-Paino, M., McLaren, J., Pappalardo, F., Trujillo, S., Wong, J. Q., …Rose, F. R. (2021). Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering. Biomaterials, 266, Article 120450. https://doi.org/10.1016/j.biomaterials.2020.120450

© 2020 The Authors Mesenchymal stem cells are the focus of intense research in bone development and regeneration. The potential of microparticles as modulating moieties of osteogenic response by utilizing their architectural features is demonstrated... Read More about Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering.