Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Synthesis and Antibacterial Evaluation of New Pyrazolo[3,4-d]pyrimidines Kinase Inhibitors (2020)
Journal Article
Greco, C., Catania, R., Balacco, D. L., Taresco, V., Musumeci, F., Alexander, C., …Schenone, S. (2020). Synthesis and Antibacterial Evaluation of New Pyrazolo[3,4-d]pyrimidines Kinase Inhibitors. Molecules, 25(22), Article 5354. https://doi.org/10.3390/molecules25225354

Pyrazolo[3,4-d]pyrimidines represent an important class of heterocyclic compounds well-known for their anticancer activity exerted by the inhibition of eukaryotic protein kinases. Recently, pyrazolo[3,4-d]pyrimidines have become increasingly attracti... Read More about Synthesis and Antibacterial Evaluation of New Pyrazolo[3,4-d]pyrimidines Kinase Inhibitors.

Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours (2020)
Journal Article
McCrorie, P., Mistry, J., Taresco, V., Lovato, T., Fay, M., Ward, I., …Rahman, R. (2020). Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. European Journal of Pharmaceutics and Biopharmaceutics, 157, 108-120. https://doi.org/10.1016/j.ejpb.2020.10.005

Glioblastoma is a malignant brain tumour with a median survival of 14.6 months from diagnosis. Despite maximal surgical resection and concurrent chemoradiotherapy, reoccurrence is inevitable. To try combating the disease at a stage of low residual tu... Read More about Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours.

Facile Dye-Initiated Polymerization of Lactide–Glycolide Generates Highly Fluorescent Poly(lactic-co-glycolic Acid) for Enhanced Characterization of Cellular Delivery (2020)
Journal Article
Al-Natour, M. A., Yousif, M. D., Cavanagh, R., Abouselo, A., Apebende, E. A., Ghaemmaghami, A., …Alexander, C. (2020). Facile Dye-Initiated Polymerization of Lactide–Glycolide Generates Highly Fluorescent Poly(lactic-co-glycolic Acid) for Enhanced Characterization of Cellular Delivery. ACS Macro Letters, 9(3), 431-437. https://doi.org/10.1021/acsmacrolett.9b01014

Copyright © 2020 American Chemical Society. Poly(lactic-co-glycolic acid) (PLGA) is a versatile synthetic copolymer that is widely used in pharmaceutical applications. This is because it is well-tolerated in the body, and copolymers of varying physic... Read More about Facile Dye-Initiated Polymerization of Lactide–Glycolide Generates Highly Fluorescent Poly(lactic-co-glycolic Acid) for Enhanced Characterization of Cellular Delivery.