Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids (2023)
Journal Article
Isik, M., Okesola, B. O., Eylem, C. C., Kocak, E., Nemutlu, E., D'Este, M., …Derkus, B. (2023). Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids. Acta Biomaterialia, 171, 223-238. https://doi.org/10.1016/j.actbio.2023.09.040

Organoids are an emerging technology with great potential in human disease modelling, drug development, diagnosis, tissue engineering, and regenerative medicine. Organoids as 3D-tissue culture systems have gained special attention in the past decades... Read More about Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids.

Multicomponent Hydrogels for the Formation of Vascularized Bone-like Constructs In Vitro (2020)
Journal Article
Derkus, B., Okesola, B. O., Barrett, D. W., D'Este, M., Chowdhury, T. T., Eglin, D., & Mata, A. (2020). Multicomponent Hydrogels for the Formation of Vascularized Bone-like Constructs In Vitro. Acta Biomaterialia, 109, 82-94. https://doi.org/10.1016/j.actbio.2020.03.025

The native extracellular matrix (ECM) is a complex gel-like system with a broad range of structural features and biomolecular signals. Hydrogel platforms that can recapitulate the complexity and signaling properties of this ECM would have enormous im... Read More about Multicomponent Hydrogels for the Formation of Vascularized Bone-like Constructs In Vitro.

Covalent co-assembly between resilin-like polypeptide and peptide amphiphile into hydrogels with controlled nanostructure and improved mechanical properties (2019)
Journal Article
Okesola, B. O., Lau, H. K., Derkus, B., Boccorh, D. K., Wu, Y., Wark, A. W., …Mata, A. (2020). Covalent co-assembly between resilin-like polypeptide and peptide amphiphile into hydrogels with controlled nanostructure and improved mechanical properties. Biomaterials Science, 8(3), 846-857. https://doi.org/10.1039/c9bm01796h

Covalent co-assembly holds great promise for the fabrication of hydrogels with controllable nanostructure, versatile chemical composition, and enhanced mechanical properties given its relative simplicity, high efficiency, and bond stability. This rep... Read More about Covalent co-assembly between resilin-like polypeptide and peptide amphiphile into hydrogels with controlled nanostructure and improved mechanical properties.