Skip to main content

Research Repository

Advanced Search

All Outputs (36)

A time-resolved Förster resonance energy transfer assay to investigate drug and inhibitor binding to ABCG2 (2024)
Journal Article

The human ATP-binding cassette (ABC) transporter, ABCG2, is responsible for multidrug resistance in some tumours. Detailed knowledge of its activity is crucial for understanding drug transport and resistance in cancer, and has implications for wider... Read More about A time-resolved Förster resonance energy transfer assay to investigate drug and inhibitor binding to ABCG2.

Bitter taste sensitivity in domestic dogs (Canis familiaris) and its relevance to bitter deterrents of ingestion (2022)
Journal Article

As the most favoured animal companion of humans, dogs occupy a unique place in society. Understanding the senses of the dog can bring benefits to both the dogs themselves and their owners. In the case of bitter taste, research may provide useful info... Read More about Bitter taste sensitivity in domestic dogs (Canis familiaris) and its relevance to bitter deterrents of ingestion.

Probing the binding of interleukin-23 to individual receptor components and the IL-23 heteromeric receptor complex in living cells using NanoBRET (2021)
Journal Article

Interleukin-23 (IL-23) is a pro-inflammatory cytokine involved in the host defence against pathogens, but also implicated in the development of several autoimmune disorders. The IL- 23 receptor has become a key target for drug discovery but the exact... Read More about Probing the binding of interleukin-23 to individual receptor components and the IL-23 heteromeric receptor complex in living cells using NanoBRET.

Subtype selective fluorescent ligands based on ICI 118,551 to study the human β2‐adrenoceptor in CRISPR/Cas9 genome‐edited HEK293T cells at low expression levels (2021)
Journal Article

Fluorescent ligand technologies have proved to be powerful tools to improve our understanding of ligand-receptor interactions. Here we have characterized a small focused library of nine fluorescent ligands based on the highly selective β2-adrenocepto... Read More about Subtype selective fluorescent ligands based on ICI 118,551 to study the human β2‐adrenoceptor in CRISPR/Cas9 genome‐edited HEK293T cells at low expression levels.

Analysis of sequence divergence in mammalian abcgs predicts a structural network of residues that underlies functional divergence (2021)
Journal Article

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. The five members of the mammalian G subfamily of ATP-binding cassette transporters differ greatly in their substrate specificity. Four members of the subfamily are important in lipid transport... Read More about Analysis of sequence divergence in mammalian abcgs predicts a structural network of residues that underlies functional divergence.

Efficient G protein coupling is not required for agonist?mediated internalization and membrane reorganization of the adenosine A 3 receptor (2021)
Journal Article

Organization of G protein-coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand ac... Read More about Efficient G protein coupling is not required for agonist?mediated internalization and membrane reorganization of the adenosine A 3 receptor.

The use of fluorescence correlation spectroscopy to monitor cell surface ?2?adrenoceptors at low expression levels in human embryonic stem cell?derived cardiomyocytes and fibroblasts (2021)
Journal Article

The importance of cell phenotype in determining the molecular mechanisms underlying ?2- adrenoceptor (?2AR) function has been noted previously when comparing responses in primary cells and recombinant model cell lines. Here, we have generated haploty... Read More about The use of fluorescence correlation spectroscopy to monitor cell surface ?2?adrenoceptors at low expression levels in human embryonic stem cell?derived cardiomyocytes and fibroblasts.

A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes (2021)
Journal Article

G-protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal... Read More about A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes.

Heterodimeric Analogues of the Potent Y1R Antagonist 1229U91, Lacking One of the Pharmacophoric C-Terminal Structures, Retain Potent Y1R Affinity and Show Improved Selectivity over Y4R (2020)
Journal Article

The cyclic dimeric peptide 1229U91 (GR231118) has an unusual structure and displays potent, insurmountable antagonism of the Y1 receptor. To probe the structural basis for this activity, we have prepared ring size variants and heterodimeric compounds... Read More about Heterodimeric Analogues of the Potent Y1R Antagonist 1229U91, Lacking One of the Pharmacophoric C-Terminal Structures, Retain Potent Y1R Affinity and Show Improved Selectivity over Y4R.

Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2 (2020)
Journal Article

© 2020 The Authors ABCG2 is one of a trio of human ATP binding cassette transporters that have the ability to bind and transport a diverse array of chemical substrates out of cells. This so-called “multidrug” transport has numerous physiological cons... Read More about Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2.

Probe dependency in the determination of ligand binding kinetics at a prototypical G protein-coupled receptor (2019)
Journal Article

© 2019, The Author(s). Drug-target binding kinetics are suggested to be important parameters for the prediction of in vivo drug-efficacy. For G protein-coupled receptors (GPCRs), the binding kinetics of ligands are typically determined using associat... Read More about Probe dependency in the determination of ligand binding kinetics at a prototypical G protein-coupled receptor.